Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hai biểu thức \(A = \dfrac{{\sqrt x  + 2}}{{\sqrt x  - 5}}\) và \(B = \dfrac{3}{{\sqrt x  + 5}} +

Cho hai biểu thức \(A = \dfrac{{\sqrt x  + 2}}{{\sqrt x  - 5}}\) và \(B = \dfrac{3}{{\sqrt x  + 5}} + \dfrac{{20 - 2\sqrt x }}{{x - 25}}\), với \(x \ge 0,x \ne 25.\)

Trả lời cho các câu 540177, 540178, 540179 dưới đây:

Câu hỏi số 1:
Vận dụng
Tính giá trị của biểu thức A khi x = 9
Câu hỏi:540178
Giải chi tiết

Khi x = 9 ta có: \(A = \dfrac{{\sqrt 9  + 2}}{{\sqrt 9  - 5}} = \dfrac{{\sqrt {{3^2}}  + 2}}{{\sqrt {{3^2}}  - 5}} = \dfrac{{3 + 2}}{{3 - 5}} =  - \dfrac{5}{2}\)

Câu hỏi số 2:
Vận dụng
Rút gọn biểu thức B.
Câu hỏi:540179
Giải chi tiết

Với \(x \ge 0,x \ne 25.\) ta có:

\(\begin{array}{l}B = \dfrac{3}{{\sqrt x  + 5}} + \dfrac{{20 - 2\sqrt x }}{{x - 25}}\\ = \dfrac{{3\left( {\sqrt x  - 5} \right)}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} + \dfrac{{20 - 2\sqrt x }}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}}\\ = \dfrac{{3\left( {\sqrt x  - 5} \right) + 20 - 2\sqrt x }}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}}\\ = \dfrac{{3\sqrt x  - 15 + 20 - 2\sqrt x }}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}}\\ = \dfrac{{\sqrt x  + 5}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}}\\ = \dfrac{1}{{\sqrt x  - 5}}\end{array}\)

Câu hỏi số 3:
Vận dụng
Tìm tất cả các giá trị của x để \(A = B.\left| {x - 4} \right|\)
Câu hỏi:540180
Giải chi tiết

Với \(x \ge 0,x \ne 25.\) ta có:

\(A = B.\left| {x - 4} \right|\)

\(\begin{array}{l} \Leftrightarrow \dfrac{{\sqrt x  + 2}}{{\sqrt x  - 5}} = \dfrac{1}{{\sqrt x  - 5}}\left| {x - 4} \right|\\ \Leftrightarrow \sqrt x  + 2 = \left| {x - 4} \right|(1)\end{array}\)

TH1: Nếu \(x \ge 4,x \ne 25\) ta được (1) trở thành:\(\sqrt x  + 2 = x - 4 \Leftrightarrow x - \sqrt x  - 6 = 0 \Leftrightarrow \left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt x  = 3 \Leftrightarrow x = 9(tm)\\\sqrt x  =  - 2(ktm)\end{array} \right.\)

TH2: Nếu \(0 \le x < 4\) ta được (1) trở thành:

\(\sqrt x  + 2 =  - x + 4 \Leftrightarrow x + \sqrt x  - 2 = 0 \Leftrightarrow \left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt x  = 1 \Leftrightarrow x = 1(tm)\\\sqrt x  =  - 2(ktm)\end{array} \right.\)

Vậy x = 9, x = 1 thỏa mãn yêu cầu bài toán.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com