Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): \(y = \left( {m + 2} \right)x + 3\) và Parabol

Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): \(y = \left( {m + 2} \right)x + 3\) và Parabol \(\left( P \right)\,:\,y = {x^2}\)

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng
Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt.
Câu hỏi:540199
Giải chi tiết

Xét phương trình hoành độ giao điểm: \({x^2} = \left( {m + 2} \right)x + 3 \Leftrightarrow {x^2} - \left( {m + 2} \right)x - 3 = 0\,\,\,\,\,\left( 1 \right)\)

Số giao điểm của (d) và (P) cũng chính là số nghiệm của phương trình (1)

Ta có: \(\Delta  = {\left( {m + 2} \right)^2} - 4.1.\left( { - 3} \right) = {m^2} + 4m + 16 = {\left( {m + 2} \right)^2} + 12 > 0,\forall m\)

Do đó phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt.

Vậy \(\left( d \right)\) và \(\left( P \right)\) luôn cắt nhau tại hai điểm phân biệt.

Câu hỏi số 2:
Vận dụng
Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có các hoành độ là các số nguyên.
Câu hỏi:540200
Giải chi tiết

Với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\)

Theo hệ thức Vi-et, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 2\\{x_1}{x_2} =  - 3\end{array} \right.\)  

+) Cách 1:

Do \({x_1}.{x_2} =  - 3\)  mà \({x_1},{x_2} \in Z\) nên ta có bảng sau:

TH1: \({x_1} = 1;{x_2} =  - 3 \Leftrightarrow {x_1} + {x_2} = m + 2 \Leftrightarrow 1 - 3 = m + 2 \Leftrightarrow m =  - 4\)

TH2: \({x_1} =  - 1;{x_2} = 3 \Leftrightarrow {x_1} + {x_2} = m + 2 \Leftrightarrow  - 1 + 3 = m + 2 \Leftrightarrow m = 0\)

TH3: \({x_1} = 3;{x_2} =  - 1 \Leftrightarrow {x_1} + {x_2} = m + 2 \Leftrightarrow 3 - 1 = m + 2 \Leftrightarrow m = 0\)

TH4: \({x_1} =  - 3;{x_2} = 1 \Leftrightarrow {x_1} + {x_2} = m + 2 \Leftrightarrow  - 3 + 1 = m + 2 \Leftrightarrow m =  - 4\)

Vậy m = -4 ; m = 0 thỏa mãn yêu cầu bài toán.

+) Cách 2:

Do \({x _1} + {x_2} = m + 2\) nên nếu \({x_1},{x_2} \in Z\) thì \(m \in Z\) 

Xét TH \(x = 0\): PT \((1)\Leftrightarrow  - 3 = 0\left( {ktm} \right) \Rightarrow x \ne 0\)

Ta có: \({x^2} - \left( {m + 2} \right)x - 3 = 0 \Leftrightarrow m + 2 = \dfrac{{{x^2} - 3}}{x} \Leftrightarrow m = x - 2 - \dfrac{3}{x}\)

Do \(x \in Z\) nên \(m \in Z \Leftrightarrow x \in U\left( 3 \right) = \left\{ { \pm 1; \pm 3} \right\}\)

Ta có bảng:

\({x^2} = \left( {m + 2} \right)x + 3 \Leftrightarrow {x^2} - \left( {m + 2} \right)x - 3 = 0\,\,\,\,\,\left( 1 \right)\)

+) Với \(m = 0\) ta có (1) trở thành: \({x^2} - 2x - 3 = 0\)

Có: \(a - b + c = 1 + 2 - 3 = 0\) nên phương trình có 2 nghiệm phân biệt: \({x_1} =  - 1;{x_2} = 3\)

Vậy m = 0 thỏa mãn

+) Với \(m =  - 4\)  ta có (1) trở thành: \({x^2} + 2x - 3 = 0\)

Có: \(a + b + c = 1 + 2 - 3 = 0\) nên phương trình có 2 nghiệm phân biệt: \({x_1} = 1;{x_2} =  - 3\)

Vậy m = - 4 thỏa mãn

Vậy \(m \in \left\{ { - 4;0} \right\}\) thỏa mãn yêu cầu bài toán.

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com