Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội (HSA) và ĐGNL TP.HCM (V-ACT) đợt 3 ngày 18-19/01/2025 ↪ Thi ngay ĐGNL Hà Nội (HSA) ↪ Thi ngay ĐGNL TP.HCM (V-ACT)
Giỏ hàng của tôi

Cho đường tròn (O;R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối

Cho đường tròn (O;R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với đường tròn (O; R) sao cho điểm C nằm trên cung nhỏ AB (C, D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB.

Trả lời cho các câu 540201, 540202, 540203, 540204 dưới đây:

Câu hỏi số 1:
Vận dụng

Chứng minh năm điểm C, D, H, O, S thuộc đường tròn đường kính SO.

Câu hỏi:540202
Giải chi tiết

Xét \(\left( O \right)\) có \(SC,\,\;\;SD\) là hai tiếp tuyến nên \(\angle SCO = \angle SDO = {90^0}.\)

Ta có: H là trung điểm của AB nên \(OH \bot AB\) (quan hệ vuông góc giữa đường kính và dây cung)

Ta có: \(\angle SDO = \angle SCO = \angle SHO = {90^0}\left( {gt} \right)\)

Suy ra: ba điểm \(\,D,\;H,C\) cùng nhìn SO dưới một góc \({90^0}\)

Do đó \(\,D,\;H,C\)thuộc đường tròn đường kính \(SO.\)  

Vậy năm điểm\(\,D,\;H,C,S,O\) cùng thuộc đường tròn đường kính SO(đpcm)

Câu hỏi số 2:
Vận dụng

Khi SO = 2R, hãy tính độ dài đoạn thẳng SD theo R và tính số đo \(\widehat {CSD}\) .

Câu hỏi:540203
Giải chi tiết

Với \(SO = 2R\).

Xét tam giác \(SDO\) vuông tại \(D\), theo định lý Pitago ta có

\(S{D^2} = S{O^2} - O{D^2} = {\left( {2R} \right)^2} - {R^2} = 3{R^2}\) \( \Rightarrow SD = \sqrt 3 R\) .

Xét tam giác \(SDO\) vuông tại \(D\) ta có \(\cos \angle DSO = \dfrac{{SD}}{{SO}} = \dfrac{{\sqrt 3 R}}{{2R}} = \dfrac{{\sqrt 3 }}{2}\)  (tỉ số lượng giác của góc nhọn)

\( \Rightarrow \angle DSO = {30^0}.\)

Xét \(\left( O \right)\) có \(SD,\,SC\) là hai tiếp tuyến cắt nhau tại \(S\) nên \(SO\) là phân giác \(\angle DSC\)  (tính chất hai tiếp tuyến cắt nhau)

Suy ra \(\angle DSC = 2\angle DSO = {2.30^0} = {60^0}.\)

Vậy khi \(SO = 2R\) thì \(SD = R\sqrt 3 \) và \(\angle CSD = {60^0}.\)

Câu hỏi số 3:
Vận dụng cao

Đường thẳng đi qua điểm A và song song với đường thẳng SC, cắt đoạn thẳng CD tại điểm K. Chứng minh tứ giác ADHK là tứ giác nội tiếp và đường thẳng BK đi qua trung điểm của đoạn thẳng SC.

Câu hỏi:540204
Giải chi tiết

* Vì 5 điểm \(S,D,O,H,C\) cùng thuộc một đường tròn (câu 1) nên \(\angle HSC = \angle HDC\)  (3) (hai góc nội tiếp cùng chắn  cung HC)

Lại có \(AK//SC \Rightarrow \angle HAK = \angle HSC\)  (hai góc ở vị trí đồng vị) (4)

Từ (3) và (4) suy ra \(\angle KAH = \angle KDH\left( { = \angle HSC} \right)\)

Xét tứ giác \(AKHD\) có \(\angle KAH = \angle KDH\) nên tứ giác \(AKHD\) là tứ giác nội tiếp (hai đỉnh kề nhau cùng nhìn cạnh đối diện dưới các góc bằng nhau).

*  Kéo dài \(AK\) cắt \(BC\) tại \(J\), kéo dài \(BK\) cắt \(SC\) tại \(I\).

Vì \(AK//SI \Rightarrow \dfrac{{AK}}{{SI}} = \dfrac{{BK}}{{BI}}.\,\,\left( {Ta - let} \right)\)

\(\begin{array}{l}KJ//CI \Rightarrow \dfrac{{KJ}}{{CI}} = \dfrac{{BK}}{{BI}}\left( {Ta\, - let} \right).\\ \Rightarrow \dfrac{{AK}}{{SI}} = \dfrac{{KJ}}{{CI}}\left( { = \dfrac{{BK}}{{BI}}} \right)\;\;\left( * \right)\end{array}\)

Xét đường tròn tâm \(\left( O \right)\) có \(\angle ABC = \angle ADC\) (hai góc nội tiếp cùng chắn cung \(AC\) ) (5)

Mà tứ giác \(ADHK\) nội tiếp (cmt) nên ta có \(\angle ADK = \angle AHK\) (6)

Từ (5) và (6) suy ra \(\angle AHK = \angle ABC\;\;\left( {\angle ADK} \right)\)  mà hai góc ở vị trí đồng vị nên \(KH//JB\)

Mà \(H\) là trung điểm \(AB\) nên \(K\) là trung điểm \(AJ\) (tính chất của đường trung bình)

suy ra \(AK = KJ\) . (**)

Từ (*) và (**) suy ra \(SI = CI\) hay \(I\) là trung điểm \(SC\).

Suy ra \(BK\) đi qua trung điểm của \(SC\). (đpcm)

Câu hỏi số 4:
Vận dụng cao

Gọi E là trung điểm của đoạn thẳng BD và F là hình chiếu vuông góc của điểm E trên đường thẳng AD. Chứng minh rằng, khi điểm S thay đổi trên tia đối của tia AB thì điểm F luôn thuộc một đường tròn cố định.

Câu hỏi:540205
Giải chi tiết

Gọi AT là đường kính của (O), M là trung điểm BT

Ta có góc \(\angle ADT = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

⇒ AD ⊥ DT

Mà EF ⊥ AD (gt) nên EF // DT

Ta có EM // DT (đường trung bình)

⇒ E, F, M thẳng hàng (theo tiên đề Ơclit về đường thẳng song song)

Ta có \(\angle ABM = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

⇒ \(\angle ABM + \angle AFM = 90^\circ  + 90^\circ  = 180^\circ \)

⇒ Tứ giác AFMB nội tiếp đường tròn đường kính AM.

Gọi L là trung điểm AM ⇒ L là tâm đường tròn ngoại tiếp ∆ ABM

⇒ Đường tròn tâm L, bán kính LA ngoại tiếp tứ giác AFMB

Ta chứng minh L là điểm cố định:

Ta có OL // TM (đường trung bình), OH // TB (đường trung bình)

⇒ O, L, H thẳng hàng (Tiên đề Ơclit về đường thẳng song song)

Mặt khác ta có \(OL = \dfrac{1}{2}TM;OH = \dfrac{1}{2}TB;TM = \dfrac{1}{2}TB \Rightarrow OH = TM \Rightarrow OL = \dfrac{1}{2}OH\)

⇒ L là trung điểm OH. Mà AB cố định \( \Rightarrow H\) cố định \( \Rightarrow OH\) cố định ⇒ L cố định

Vậy khi S thay đổi trên tia đối của AB thì F luôn nằm trên đường tròn tâm L, bán kính LA, với L là trung điểm OH.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com