Cho parabol \(\left( P \right):\;\;y = {x^2}\) và đường thẳng \(\left( d \right):\;\;y = 3x - 2.\)
Cho parabol \(\left( P \right):\;\;y = {x^2}\) và đường thẳng \(\left( d \right):\;\;y = 3x - 2.\)
Trả lời cho các câu 540207, 540208 dưới đây:
+) Vẽ đồ thị hàm số \(\left( P \right):\;\;y = {x^2}:\)
Ta có bảng giá trị:
Đồ thị hàm số (P) có hình dạng đường cong đi qua các điểm \(\left( {0;\;0} \right),\;\;\left( { - 1;\;1} \right),\;\;\left( { - 2;\;4} \right),\;\;\left( {1;\;1} \right),\;\left( {2;\;4} \right).\)
+) Vẽ đồ thị hàm số: \(\left( d \right):\;\;y = 3x - 2.\)
Đồ thị hàm số \(\left( d \right):\;\;y = 3x - 2\) là đường thẳng đi qua các điểm \(\left( {1;\;1} \right),\;\;\left( {2;\;\;4} \right).\)
Đồ thị hàm số:
Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình:
\(\begin{array}{l}{x^2} = 3x - 2 \Leftrightarrow {x^2} - 3x + 2 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = 1\\x = 2 \Rightarrow y = 4\end{array} \right..\end{array}\)
Vậy đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt: \(\left( {1;\;1} \right)\) và \(\left( {2;\;\;4} \right).\)
Quảng cáo
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com