Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho \(m,\,p,\,r\) là các số nguyên tố thỏa mãn \(mp + 1 = r\). Chứng minh rằng \({m^2} + r\) hoặc

Câu hỏi số 553517:
Vận dụng

Cho \(m,\,p,\,r\) là các số nguyên tố thỏa mãn \(mp + 1 = r\). Chứng minh rằng \({m^2} + r\) hoặc \({p^2} + r\) là số chính phương.

Câu hỏi:553517
Phương pháp giải

Vận dụng định nghĩa số chính phương.

Giải chi tiết

a) Vì \(m,\,p\) là các số nguyên tố nên \(mp \ge 4\). Do đó, \(r \ge 5\). Mà \(r\) là nguyên tố nên r là số lẻ.

Vì thế, \(mp = r - 1\) là một số chẵn. Suy ra, trong hai số \(m,\,p\), có ít nhất một số bằng 2.

- Nếu \(m = 2\) thì \(r = 2p + 1\). Do đó:

\({p^2} + r = {p^2} + 2p + 1 = {\left( {p + 1} \right)^2}\),

Là một số chính phương.

- Nếu \(p = 2\) thì \(r = 2m + 1\). Do đó \({m^2} + r = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\) là một số chính phương

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com