Trên một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, A là một điểm
Trên một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, A là một điểm nút, B là điểm bụng gần A nhất với \(AB=18cm\), M là một điểm trên dây cách B một khoảng 12cm. Biết rằng trong một chu kì sóng, khoảng thời gian mà độ lớn vận tốc dao động của phần tử tại B nhỏ hơn vận tốc cực đại của phần tử tại M là 0,2s. Tốc độ truyền sóng trên dây là
Đáp án đúng là: C
Khoảng cách giữa 1 nút và 1 bụng liên tiếp là \(\dfrac{\lambda }{4}\)
Biên độ của sóng dừng tại điểm M cách bụng sóng 1 khoảng d là:
\({A_M} = 2a.\cos \dfrac{{2\pi d}}{\lambda } = A.\cos \dfrac{{2\pi d}}{\lambda }\)
(A = 2a là biên độ của bụng sóng)
Vận tốc truyền sóng: \(v = \dfrac{\lambda }{T}\)
Ta có: \(AB = \dfrac{\lambda }{4} = 18 \Rightarrow \lambda = 72cm\)
Biên độ sóng tại M:
\({A_M} = A.\cos \dfrac{{2\pi d}}{\lambda } = A.\cos \dfrac{{2\pi .12}}{{72}} = \dfrac{A}{2}\)
(Với A là biên độ của bụng sóng)
Vận tốc cực đại của phần tử tại M:
\({v_{M\max }} = \omega {A_M} = \dfrac{{\omega A}}{2}\)
Vận tốc cực đại của phần tử tại B (bụng sóng)
\({v_{B\max }} = \omega {A_B} = \omega A\)
Theo đề bài: Khoảng thời gian mà độ lớn vận tốc dao động của phần tử B nhỏ hơn vận tốc cực đại tại M là 0,1s. Ta có:
\( \Rightarrow \Delta t = 4.\dfrac{T}{{12}} = 0,2s \Rightarrow T = 0,6s\)
Tốc độ truyền sóng trên dây là:
\(v = \dfrac{\lambda }{T} = \dfrac{{72}}{{0,6}} = 120cm/s = 1,2m/s\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com