Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giải phương trình \(4{x^2} - x - 3 = 2\sqrt {x + 2} \)

Câu hỏi số 565905:
Vận dụng

Giải phương trình \(4{x^2} - x - 3 = 2\sqrt {x + 2} \)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:565905
Giải chi tiết

ĐKXĐ: \(x \ge  - 2\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}\,\,\,\,\,\,\,\,{\left( {4{x^2} - x - 3} \right)^2} = 4\left( {x + 2} \right)\\ \Leftrightarrow 16{x^4} + {x^2} + 9 - 8{x^3} + 6x - 24{x^2} = 4x + 8\\ \Leftrightarrow 16{x^4} - 8{x^3} - 23{x^2} + 2x + 1 = 0\\ \Leftrightarrow \left( {16{x^4} + 16{x^3}} \right) - \left( {24{x^3} + 24{x^2}} \right) + \left( {{x^2} + 2x + 1} \right) = 0\\ \Leftrightarrow 16{x^3}\left( {x + 1} \right) - 24{x^2}\left( {x + 1} \right) + \left( {x + {1^2}} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {16{x^3} - 24{x^2} + x + 1} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left[ {\left( {16{x^3} - 4{x^2}} \right) - \left( {20{x^2} - 5x} \right) - \left( {4x - 1} \right)} \right] = 0\\ \Leftrightarrow \left( {x + 1} \right)\left[ {4{x^2}\left( {4x - 1} \right) - 5x\left( {4x - 1} \right) - \left( {4x - 1} \right)} \right] = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {4x - 1} \right)\left( {4{x^2} - 5x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\4x - 1 = 0\\4{x^2} - 5x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = \dfrac{1}{4}\\4{x^2} - 5x - 1 = 0\,\,\,\,\,(*)\end{array} \right.\end{array}\)

Giải (*): Ta có: \(\Delta  = {\left( { - 5} \right)^2} - 4.4.\left( { - 1} \right) = 41\)

Phương trình (*) có hai nghiệm phân biệt: \(\left[ \begin{array}{l}x = \dfrac{{5 + \sqrt {41} }}{8}\\x = \dfrac{{5 - \sqrt {41} }}{8}\end{array} \right.\)

Thử lại vào phương trình đã cho ta được tập nghiệm của phương trình là: \(S = \left\{ { - 1;\dfrac{{5 + \sqrt {41} }}{8}} \right\}\)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com