Chứng minh các đẳng thức sau:a) \({\tan ^2}x - {\sin ^2}x = {\tan ^2}x.{\sin ^2}x\)b) \({\sin ^6}x + {\cos ^6}x
Chứng minh các đẳng thức sau:
a) \({\tan ^2}x - {\sin ^2}x = {\tan ^2}x.{\sin ^2}x\)
b) \({\sin ^6}x + {\cos ^6}x = 1 - 3{\sin ^2}x{\cos ^2}x\)
c) \(\dfrac{{{{\tan }^3}x}}{{{{\sin }^2}x}} - \dfrac{1}{{\sin x\cos x}} + \dfrac{{{{\cot }^3}x}}{{{{\cos }^2}x}} = {\tan ^3}x + {\cot ^3}x\)
a) Sử dụng công thức \(\tan x = \dfrac{{\sin x}}{{\cos x}}\), \(\dfrac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x\).
b) Sử dụng \({\sin ^2}x + {\cos ^2}x = 1\) và hằng đẳng thức \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\).
c) Sử dụng công thức \(\dfrac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x\), \(\dfrac{1}{{{{\sin }^2}x}} = 1 + {\cot ^2}x\), \({\sin ^2}x + {\cos ^2}x = 1\).
a)
\(\begin{array}{l}VT = {\tan ^2}x - {\sin ^2}x = \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - {\sin ^2}x\\ = \left( {\dfrac{1}{{{{\cos }^2}x}} - 1} \right){\sin ^2}x = {\tan ^2}x.{\sin ^2}x = VP\,\,\left( {dpcm} \right)\end{array}\)
b)
\(\begin{array}{l}VT = {\sin ^6}x + {\cos ^6}x = {\left( {{{\sin }^2}x} \right)^3} + {\left( {{{\cos }^2}x} \right)^3}\\ = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\\ = 1 - 3{\sin ^2}x{\cos ^2}x = VP\,\,\left( {dpcm} \right)\end{array}\)
c)
\(\begin{array}{l}VT = \dfrac{{{{\tan }^3}x}}{{{{\sin }^2}x}} - \dfrac{1}{{\sin x\cos x}} + \dfrac{{{{\cot }^3}x}}{{{{\cos }^2}x}}\\ = {\tan ^3}x\left( {1 + {{\cot }^2}x} \right) - \dfrac{1}{{\sin x\cos x}} + {\cot ^3}x\left( {1 + {{\tan }^2}x} \right)\\ = {\tan ^3}x + \tan x - \dfrac{1}{{\sin x\cos x}} + {\cot ^3}x + \cot x\\ = {\tan ^3}x + {\cot ^3}x + \tan x + \cot x - \dfrac{1}{{\sin x\cos x}}\\ = {\tan ^3}x + {\cot ^3}x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}} - \dfrac{1}{{\sin x\cos x}}\\ = {\tan ^3}x + {\cot ^3}x + \dfrac{{{{\sin }^2}x}}{{\cos x}} + \dfrac{{{{\cos }^2}x}}{{\sin x}} - \dfrac{1}{{\sin x\cos x}}\\ = {\tan ^3}x + {\cot ^3}x + \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}} - \dfrac{1}{{\sin x\cos x}}\\ = {\tan ^3}x + {\cot ^3}x = VP\,\,\left( {dpcm} \right)\end{array}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com