Tìm số thực \(x\) biết:a) \(2\left( {\sqrt x + 1} \right) - 4 = 2\) b) \(\dfrac{{2\sqrt {x -
Tìm số thực \(x\) biết:
a) \(2\left( {\sqrt x + 1} \right) - 4 = 2\)
b) \(\dfrac{{2\sqrt {x - 1} }}{9} = \dfrac{3}{{10}}\)
c) \(\dfrac{2}{{3\sqrt {x - 4} }} = \dfrac{4}{5}\)
d) \(\dfrac{5}{{2\sqrt x }} - \dfrac{1}{3} = \dfrac{2}{3}\)
+ Với \(a \ge 0\), ta có: \({\left( {\sqrt a } \right)^2} = a;{\left( { - \sqrt a } \right)^2} = a\)
+ Với \(a \ge 0\), ta có: \({x^2} = a \Leftrightarrow x = \sqrt a \) hoặc \(x = - \sqrt a \)
+ Với \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)
a) \(2\left( {\sqrt x + 1} \right) - 4 = 2\) (điều kiện: \(x \ge 0\))
\(\begin{array}{l}2\left( {\sqrt x + 1} \right) = 6\\\;\;\,\,\,\,\sqrt x + 1 = 3\\\;\;\,\;\,\;\;\;\;\,\sqrt x = 2\\\;\;\;\;\;\;\,\;\;\;\;\,x = 4\left( {tm} \right)\end{array}\)
Vậy \(x = 4\)
b) \(\dfrac{{2\sqrt {x - 1} }}{9} = \dfrac{3}{{10}}\) (điều kiện: \(x \ge 1\))
\(\begin{array}{l}2\sqrt {x - 1} = \dfrac{{27}}{{10}}\\\sqrt {x - 1} = \dfrac{{27}}{{20}}\\x - 1 = {\left( {\dfrac{{27}}{{20}}} \right)^2} = \dfrac{{729}}{{400}}\\x = \dfrac{{1129}}{{400}}\left( {tm} \right)\end{array}\)
Vậy \(x = \dfrac{{1149}}{{400}}\)
c) \(\dfrac{2}{{3\sqrt {x - 4} }} = \dfrac{4}{5}\left( {dk:x > 4} \right)\)
\(\begin{array}{l}3\sqrt {x - 4} = \dfrac{5}{2}\\\sqrt {x - 4} = \dfrac{5}{6}\\x - 4 = \dfrac{{25}}{{36}}\\x = \dfrac{{169}}{{36}}\left( {tm} \right)\end{array}\)
Vậy \(x = \dfrac{{169}}{{36}}\)
d) \(\dfrac{5}{{2\sqrt x }} - \dfrac{1}{3} = \dfrac{2}{3}\left( {dk:x > 0} \right)\)
\(\begin{array}{l}\dfrac{5}{{2\sqrt x }} = 1\\2\sqrt x = 5\\\sqrt x = \dfrac{5}{2}\\x = \dfrac{{25}}{4}\left( {tm} \right)\end{array}\)
Vậy \(x = \dfrac{{25}}{4}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com