Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh 2a, SA vuông góc với mặt phẳng đáy, góc

Câu hỏi số 673523:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh 2a, SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng ( SBC ) và mặt phẳng đáy bằng 60°. Diện tích mặt cầu ngoại tiếp hình chóp \(S.ABC\) bằng 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:673523
Phương pháp giải

Xác định điểm \(K\) cách đều 4 điểm S,A,B,C, khi đó \(K\) là tâm mặt cầu ngoại tiếp hình chóp S.ABC

Diện tích mặt cầu bán kính \(R\) là \(S = 4\pi {R^2}\).

Giải chi tiết

Gọi \(G\)trọng tâm tam giác đồng thời là tâm đường tròn ngoại tiếp tam giác ABC.

Vì tam giác ABC đều nên \(BC \bot AI\), lại có \(BC \bot SA \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot SI\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SBC} \right) \cap \left( {ABC} \right) = BC}\\{AI \bot BC,AI \subset \left( {ABC} \right)}\\{SI \bot BC,SI \subset \left( {SBC} \right)}\end{array}} \right.\)  nên góc giữa \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là góc giữa SI và AI

Hay \(\widehat {SIA} = {60^\circ }.\)

Xét tam giác SAI vuông tại \(A\) ta có:\(SA = AI.\tan {60^\circ } = 3a\)

\( \Rightarrow KG = \dfrac{{SA}}{2} = \dfrac{{3a}}{2}\)

Qua \(G\) ta dựng đường thẳng \(\Delta  \bot \left( {ABC} \right)\).

Dựng trung trực SA cắt đường thẳng \(\Delta \) tại \(K\),

khi đó \(KS = KA = KB = KC\)  nên \(K\) là tâm mặt cầu ngoại tiếp khối chóp S.ABC.

Ta có \(R = KA = \sqrt {K{G^2} + A{G^2}}  = a.\sqrt {\dfrac{{43}}{{12}}} \).

Diện tích mặt cầu \(S = 4\pi {R^2} = \dfrac{{43\pi {a^2}}}{3} \cdot \)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com