Tìm x biết: a) \(\dfrac{1}{{5.8}} + \dfrac{1}{{8.11}} + \dfrac{1}{{11.14}} + \cdots + \dfrac{1}{{x \cdot
Tìm x biết:
a) \(\dfrac{1}{{5.8}} + \dfrac{1}{{8.11}} + \dfrac{1}{{11.14}} + \cdots + \dfrac{1}{{x \cdot (x + 3)}} = \dfrac{{101}}{{1540}}\)
b) \(1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + \ldots .. + \dfrac{2}{{x(x + 1)}} = 1\dfrac{{1989}}{{1991}}\)
Quảng cáo
Biến đổi rồi phân tích để rút gọn.
a) \(\dfrac{1}{{5.8}} + \dfrac{1}{{8.11}} + \dfrac{1}{{11.14}} + \cdots + \dfrac{1}{{x \cdot (x + 3)}} = \dfrac{{101}}{{1540}}\)
\( \Leftrightarrow \dfrac{1}{3} \cdot \left( {\dfrac{1}{5} - \dfrac{1}{8} + \dfrac{1}{8} - \dfrac{1}{{11}} + \dfrac{1}{{11}} - \dfrac{1}{{14}} + \ldots + \dfrac{1}{x} - \dfrac{1}{{x + 3}}} \right) = \dfrac{{101}}{{1540}}\)
\( \Leftrightarrow \dfrac{1}{3} \cdot \left( {\dfrac{1}{5} - \dfrac{1}{{x + 3}}} \right) = \dfrac{{101}}{{1540}}\)
\( \Leftrightarrow \dfrac{1}{5} - \dfrac{1}{{x + 3}} = \dfrac{{101}}{{1540}} \cdot 3 = \dfrac{{303}}{{1540}}\)
\( \Leftrightarrow \dfrac{1}{{x + 3}} = \dfrac{1}{5} - \dfrac{{303}}{{1540}} = \dfrac{1}{{308}}\)
\( \Leftrightarrow x + 3 = 308\)
\( \Leftrightarrow {\rm{x}} = 305\)
b) \(1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{{10}} + \ldots .. + \dfrac{2}{{x(x + 1)}} = 1\dfrac{{1989}}{{1991}}\)
\( \Leftrightarrow \dfrac{1}{2} + \dfrac{1}{{2.3}} + \dfrac{1}{{2.6}} + \dfrac{1}{{2.10}} + \ldots .. + \dfrac{1}{{x(x + 1)}} = \dfrac{{1990}}{{1991}}\)
\( \Leftrightarrow \dfrac{1}{2} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + \ldots .. + \dfrac{1}{{x(x + 1)}} = \dfrac{{1990}}{{1991}}\)
\( \Leftrightarrow \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{5} + \ldots .. + \dfrac{1}{x} - \dfrac{1}{{x + 1}} = \dfrac{{1990}}{{1991}}\)
\( \Leftrightarrow \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{{x + 1}} = \dfrac{{1990}}{{1991}}\)
\( \Leftrightarrow 1 - \dfrac{1}{{x + 1}} = \dfrac{{1990}}{{1991}}\)
\( \Leftrightarrow \dfrac{1}{{x + 1}} = 1 - \dfrac{{1990}}{{1991}}\)
\( \Leftrightarrow \dfrac{1}{{x + 1}} = \dfrac{1}{{1991}}\)
\( \Leftrightarrow x + 1 = 1991\)
\(x = 1991 - 1\)
\(x = 1990\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com