Cho đường tròn tâm \(O\), bán kính \(R = 13\,cm\), dây cung \(AB = 24\,cm\). Khoảng cách từ tâm \(O\)
Cho đường tròn tâm \(O\), bán kính \(R = 13\,cm\), dây cung \(AB = 24\,cm\). Khoảng cách từ tâm \(O\) đến dây AB là:
Đáp án đúng là: C
Dựa vào định lí Pythagore trong tam giác vuông.
Xét đường tròn \(\left( O \right)\) kẻ \(OM \bot AB\) tại \(M\)
Xét tam giác OAB cân tại O (OA = OB = R) có \(OM \bot AB\)
\( \Rightarrow OM\) là đường trung tuyến
\( \Rightarrow M\) là trung điểm của AB
\( \Rightarrow BM = \dfrac{1}{2}AB = 12\left( {cm} \right)\)
\(\Delta OBM\) vuông tại \(M\), áp dụng định lý Pythagore, ta có:
\(\begin{array}{*{20}{l}}{O{B^2} = O{M^2} + M{B^2}}\\{O{M^2} = O{B^2} - M{B^2}}\\{O{M^2} = {{13}^2} - {{12}^2}}\\{O{M^2} = 25}\\{ \Rightarrow OM = 5\left( {cm} \right)}\end{array}\)
Vậy khoảng cách từ \(O\) đến dây AB là \(5\,cm.\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com