Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tam giác ABC cân tại A, các đường cao \(AM,{\mkern 1mu} {\mkern 1mu} BN\) cắt nhau tại H. Chứng minh

Câu hỏi số 717813:
Vận dụng

Cho tam giác ABC cân tại A, các đường cao \(AM,{\mkern 1mu} {\mkern 1mu} BN\) cắt nhau tại H. Chứng minh MN là tiếp tuyến của đường tròn đường kính AH.

Câu hỏi:717813
Phương pháp giải

Sử dụng tính chất tam giác cân và tính chất tiếp tuyến để chứng minh bài toán.

Giải chi tiết

Gọi \(O\) là trung điểm của AH \( \Rightarrow O\) là tâm của đường tròn đường kính AH.

Ta có: BN là đường cao của \(\Delta ABC\) ..

\( \Rightarrow \Delta ANH\) vuông tại \(N\) \( \Rightarrow N \in \left( O \right).\)  (*)

Xét \(\Delta ANH\) vuông tại \(N\) có đường trung tuyến ON

\( \Rightarrow ON = OH = \dfrac{1}{2}AH\) (đường trung tuyến ứng với cạnh huyền trong tam giác vuông).

\( \Rightarrow \Delta ONH\) cân tại \(O\) (định nghĩa tam giác cân)

\( \Rightarrow \angle ONH = \angle OHN\) (tính chất tam giác cân)  (1)

Vì \(\Delta ABC\) cân tại A, có đường cao \(AM \Rightarrow M\) là trung điểm của BC (tính chất tam giác cân).

Xét \(\Delta BCN\) vuông tại \(N\) có đường trung tuyến MN

\( \Rightarrow MN = BM = \dfrac{1}{2}BC\) (đường trung tuyến ứng với cạnh huyền trong tam giác vuông).

\( \Rightarrow \angle MBN = \angle MNB\) (tính chất tam giác cân). (2)

Lại có: \(\angle MHB + \angle HBM = {90^0}\) (\(\Delta BHM\)vuông tại \(M\))

Hay \(\angle MHB + \angle NBM = {90^0}\)

Mặt khác \(\angle BHM = \angle OHN\) (hai góc đối đỉnh)

\( \Rightarrow \angle OHN + \angle HBM = {90^0}\)  (3)

Từ (1), (2) và (3) ta suy ra: \(\angle MNB + \angle HNO = {90^0}\)

Hay \(MN \bot ON\) (**)

Từ (*) và (**) \( \Rightarrow MN\) là tiếp tuyến của đường tròn đường kính AH (đpcm)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com