Cho hình chóp S.ABCDS.ABCD, biết ABAB cắt CDCD tại E,ACE,AC cắt BDBD tại FF trong mặt
Cho hình chóp S.ABCDS.ABCD, biết ABAB cắt CDCD tại E,ACE,AC cắt BDBD tại FF trong mặt phẳng đáy. Khi đó:
Các mệnh đề sau đúng hay sai?
Đúng | Sai | |
---|---|---|
1) a) Đường thẳng EFEF nằm trong mặt phẳng (ABCD)(ABCD). |
||
2) b) ABAB là giao tuyến của hai mặt phẳng (SAB)(SAB) và (ABCD)(ABCD). |
||
3) c) SFSFlà giao tuyến của hai mặt phẳng (SAB)(SAB) và (SCD),(SCD), SESE là giao tuyến của hai mặt phẳng (SAC)(SAC) và (SBD)(SBD). |
||
4) d) Gọi G=EF∩ADG=EF∩AD khi đó, SGSG giao tuyến của mặt phẳng (SEF)(SEF) và mặt phẳng (SAD)(SAD). |
Đáp án đúng là: 1Đ, 2Đ, 3S, 4Đ
Quảng cáo
Muốn tìm giao tuyến của hai mặt phẳng: ta tìm hai điểm chung thuộc cả hai mặt phẳng. Nối hai điểm chung đó được giao tuyến cần tìm.
a) Đúng b) Đúng c) Sai d) Đúng
a) Ta có: E=AB∩CD⇒E∈AB,AB⊂(ABCD)⇒E∈(ABCD)E=AB∩CD⇒E∈AB,AB⊂(ABCD)⇒E∈(ABCD).
Tương tự: F=AC∩BD⇒F∈AC,AC⊂(ABCD)⇒F∈(ABCD)F=AC∩BD⇒F∈AC,AC⊂(ABCD)⇒F∈(ABCD). Vậy EF⊂(ABCD)EF⊂(ABCD).
b) Dễ thấy AA là điểm chung của hai mặt phẳng (SAB)(SAB) và (ABCD),B(ABCD),B cũng là điểm chung của hai mặt phẳng (SAB)(SAB) và (ABCD)(ABCD).
Suy ra AB=(SAB)∩(ABCD)AB=(SAB)∩(ABCD).
c) Tìm giao tuyến của (SAB)(SAB) và SCD)SCD):
Dễ thấy SS là điểm chung của hai mặt phẳng (SAB)(SAB) và (SCD)(SCD).
Ta có: {E∈AB,AB⊂(SAB)E∈CD,CD⊂(SCD)⇒E∈(SAB)∩(SCD).
Vậy SE=(SAB)∩(SCD).
Tìm giao tuyến của (SAC) và (SBD) :
Dễ thấy S là điểm chung của hai mặt phẳng (SAC) và (SBD).
Ta có: {F∈AC,AC⊂(SAC)F∈BD,BD⊂(SBD)⇒F∈(SAC)∩(SBD).
Vậy SF=(SAC)∩(SBD).
d) Tìm giao tuyến của (SEF) với (SAD) :
Dễ thấy S là điểm chung của hai mặt phẳng (SEF) và (SAD).
Trong mặt phẳng (ABCD), gọi G=EF∩AD.
Ta có: {G∈EF,EF⊂(SEF)G∈AD,AD⊂(SAD)⇒G∈(SEF)∩(SAD).
Vậy SG=(SEF)∩(SAD).
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn

-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com