Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\), biết \(AB\) cắt \(CD\) tại \(E,AC\) cắt \(BD\) tại \(F\) trong mặt

Câu hỏi số 720005:
Vận dụng

Cho hình chóp \(S.ABCD\), biết \(AB\) cắt \(CD\) tại \(E,AC\) cắt \(BD\) tại \(F\) trong mặt phẳng đáy. Khi đó:

Các mệnh đề sau đúng hay sai?

Đúng Sai
a)

a) Đường thẳng \(EF\) nằm trong mặt phẳng \((ABCD)\).

b)

b) \(AB\) là giao tuyến của hai mặt phẳng \((SAB)\) và \((ABCD)\).

c)

c) \(SF\)là giao tuyến của hai mặt phẳng \((SAB)\) và \((SCD),\) \(SE\) là giao tuyến của hai mặt phẳng \((SAC)\) và \((SBD)\).

d) d) Gọi \(G = EF \cap AD\) khi đó, \(SG\) giao tuyến của mặt phẳng \((SEF)\) và mặt phẳng \((SAD)\).

Đáp án đúng là: Đ; Đ; S; Đ

Quảng cáo

Câu hỏi:720005
Phương pháp giải

Muốn tìm giao tuyến của hai mặt phẳng: ta tìm hai điểm chung thuộc cả hai mặt phẳng. Nối hai điểm chung đó được giao tuyến cần tìm.

Giải chi tiết

 

a) Đúng           b) Đúng           c) Sai               d) Đúng

a) Ta có: \(E = AB \cap CD \Rightarrow E \in AB,AB \subset (ABCD) \Rightarrow E \in (ABCD)\).

Tương tự: \(F = AC \cap BD \Rightarrow F \in AC,AC \subset (ABCD) \Rightarrow F \in (ABCD)\). Vậy \(EF \subset (ABCD)\).

b) Dễ thấy \(A\) là điểm chung của hai mặt phẳng \((SAB)\) và \((ABCD),B\) cũng là điểm chung của hai mặt phẳng \((SAB)\) và \((ABCD)\).

Suy ra \(AB = (SAB) \cap (ABCD)\).

c) Tìm giao tuyến của \((SAB)\)\(SCD)\):

Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SAB)\) và \((SCD)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{E \in AB,AB \subset (SAB)}\\{E \in CD,CD \subset (SCD)}\end{array} \Rightarrow E \in (SAB) \cap (SCD)} \right.\).

Vậy \(SE = (SAB) \cap (SCD)\).

Tìm giao tuyến của \((SAC)\)\((SBD)\) :

Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SAC)\) và \((SBD)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{F \in AC,AC \subset (SAC)}\\{F \in BD,BD \subset (SBD)}\end{array} \Rightarrow F \in (SAC) \cap (SBD)} \right.\).

Vậy \(SF = (SAC) \cap (SBD)\).

d) Tìm giao tuyến của \((SEF)\) với \((SAD)\) :

Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SEF)\) và \((SAD)\).

Trong mặt phẳng \((ABCD)\), gọi \(G = EF \cap AD\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{G \in EF,EF \subset (SEF)}\\{G \in AD,AD \subset (SAD)}\end{array} \Rightarrow G \in (SEF) \cap (SAD)} \right.\).

Vậy \(SG = (SEF) \cap (SAD)\).

Đáp án cần chọn là: Đ; Đ; S; Đ

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com