Cho hình chóp \(S.ABCD\), biết \(AB\) cắt \(CD\) tại \(E,AC\) cắt \(BD\) tại \(F\) trong mặt
Cho hình chóp \(S.ABCD\), biết \(AB\) cắt \(CD\) tại \(E,AC\) cắt \(BD\) tại \(F\) trong mặt phẳng đáy. Khi đó:
Các mệnh đề sau đúng hay sai?
Đúng | Sai | |
---|---|---|
1) a) Đường thẳng \(EF\) nằm trong mặt phẳng \((ABCD)\). |
||
2) b) \(AB\) là giao tuyến của hai mặt phẳng \((SAB)\) và \((ABCD)\). |
||
3) c) \(SF\)là giao tuyến của hai mặt phẳng \((SAB)\) và \((SCD),\) \(SE\) là giao tuyến của hai mặt phẳng \((SAC)\) và \((SBD)\). |
||
4) d) Gọi \(G = EF \cap AD\) khi đó, \(SG\) giao tuyến của mặt phẳng \((SEF)\) và mặt phẳng \((SAD)\). |
Đáp án đúng là: 1Đ, 2Đ, 3S, 4Đ
Muốn tìm giao tuyến của hai mặt phẳng: ta tìm hai điểm chung thuộc cả hai mặt phẳng. Nối hai điểm chung đó được giao tuyến cần tìm.
a) Đúng b) Đúng c) Sai d) Đúng
a) Ta có: \(E = AB \cap CD \Rightarrow E \in AB,AB \subset (ABCD) \Rightarrow E \in (ABCD)\).
Tương tự: \(F = AC \cap BD \Rightarrow F \in AC,AC \subset (ABCD) \Rightarrow F \in (ABCD)\). Vậy \(EF \subset (ABCD)\).
b) Dễ thấy \(A\) là điểm chung của hai mặt phẳng \((SAB)\) và \((ABCD),B\) cũng là điểm chung của hai mặt phẳng \((SAB)\) và \((ABCD)\).
Suy ra \(AB = (SAB) \cap (ABCD)\).
c) Tìm giao tuyến của \((SAB)\) và \(SCD)\):
Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SAB)\) và \((SCD)\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{E \in AB,AB \subset (SAB)}\\{E \in CD,CD \subset (SCD)}\end{array} \Rightarrow E \in (SAB) \cap (SCD)} \right.\).
Vậy \(SE = (SAB) \cap (SCD)\).
Tìm giao tuyến của \((SAC)\) và \((SBD)\) :
Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SAC)\) và \((SBD)\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{F \in AC,AC \subset (SAC)}\\{F \in BD,BD \subset (SBD)}\end{array} \Rightarrow F \in (SAC) \cap (SBD)} \right.\).
Vậy \(SF = (SAC) \cap (SBD)\).
d) Tìm giao tuyến của \((SEF)\) với \((SAD)\) :
Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SEF)\) và \((SAD)\).
Trong mặt phẳng \((ABCD)\), gọi \(G = EF \cap AD\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{G \in EF,EF \subset (SEF)}\\{G \in AD,AD \subset (SAD)}\end{array} \Rightarrow G \in (SEF) \cap (SAD)} \right.\).
Vậy \(SG = (SEF) \cap (SAD)\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com