Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(G\) và \(G'\) lần lượt là trọng tâm của

Câu hỏi số 724207:
Vận dụng

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(G\) và \(G'\) lần lượt là trọng tâm của hai tam giác \(B'D'A\) và \(BDC'\). Khi đó \(GG' = kA'C\). Giá trị của \(k\) là

Đáp án đúng là:

Quảng cáo

Câu hỏi:724207
Phương pháp giải

Sử dụng tính chất trọng tâm của tam giác

Giải chi tiết

Gọi \(O,\,\,O'\) và \(Q\) lần lượt là các hình bình hành \(ABCD,\,\,A'B'C'D'\) và \(AA'C'C\)

Vì \(G\) là trọng tâm \(\Delta AB'D'\) nên \(A'Q\) đi qua \(G\)

Vì \(G'\) là trọng tâm \(\Delta BDC'\) nên \(CQ\) đi qua \(G'\)

Do đó \(A'C\) qua \(G,\,\,G'\)

Lại có: \(\dfrac{{A'G}}{{A'Q}} = \dfrac{2}{3} \Rightarrow \dfrac{{A'G}}{{A'C}} = \dfrac{1}{3} \Rightarrow A'G = \dfrac{1}{3}A'C\)

\(\dfrac{{CG'}}{{CQ}} = \dfrac{2}{3} \Rightarrow \dfrac{{CG'}}{{CQ}} = \dfrac{2}{3} \Rightarrow \dfrac{{CG'}}{{A'C}} = \dfrac{1}{3} \Rightarrow CG' = \dfrac{1}{3}A'C\)

Do đó \(A'G = GG' = G'C = \dfrac{1}{3}A'C\)

Đáp án: \(\dfrac{1}{3}\)

Đáp án cần điền là: 0,33

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com