Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(CD,\,\,SD\). Biết rằng mặt phẳng \(\left( {BMN} \right)\) cắt đường thẳng \(SA\) tại \(P\). Tỉ số đoạn thẳng \(\dfrac{{SP}}{{SA}}\) là
Đáp án đúng là:
Quảng cáo
- Gọi \(Q = AC \cap BM\)
- Chứng minh \(P = SA \cap \left( {BMN} \right)\)
- Sử dụng tính chất trọng tâm trong tam giác
Đáp án cần điền là: 0,33
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













