Cho phương trình \({x^2} - 2(m - 1)x - 3 - m = 0\). Tìm m để phương trình có hai nghiệm cùng âm.
Cho phương trình \({x^2} - 2(m - 1)x - 3 - m = 0\). Tìm m để phương trình có hai nghiệm cùng âm.
Đáp án đúng là: C
Quảng cáo
Sử dụng định lí Viète, áp dụng điều kiện để phương trình có hai nghiệm âm. Giải kết hợp điều kiện để tìm tham số m.
Phương trình có hai nghiệm cùng âm khi \(\left\{ {\begin{array}{*{20}{l}}{\Delta {\rm{\;}} \ge 0}\\{{x_1} + {x_2} < 0}\\{{x_1}{x_2} > 0}\end{array}} \right..\)
Đáp án cần chọn là: C
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










