Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Đồ thị hàm số \(y = \dfrac{{2x + 2}}{{{x^2} - 1}}\) có tất cả các đường tiệm cận là: 

Câu hỏi số 188038:
Nhận biết

Đồ thị hàm số \(y = \dfrac{{2x + 2}}{{{x^2} - 1}}\) có tất cả các đường tiệm cận là: 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:188038
Phương pháp giải

Đường thẳng \(x=a\) được gọi là TCĐ của đồ thị hàm số  \(y=f(x) \Leftrightarrow \mathop {\lim }\limits_{x \to a} f\left( x \right) =  \pm \infty .\)

Đường thẳng \(y=b\) được gọi là TCN của đồ thị hàm số  \(y=f(x) \Leftrightarrow \mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) =  b .\)

Giải chi tiết

Ta có: \(y = \dfrac{{2x + 2}}{{{x^2} - 1}} = \dfrac{{2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{2}{{x - 1}}.\)

Cho mẫu bằng 0 ta được: \(x = 1\)\( \Rightarrow x = 1\) là TCĐ của đồ thị hàm số.

Sử dụng pp bấm máy tính ta được: \(x \to  \pm \infty :\,y = 0\) \( \Rightarrow y = 0\) là TCN của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường tiệm cận: \(x = 1\) và \(y = 0\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com