Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hàm số \(y=f(x)\) có đạo hàm trên \(\mathbb{R}\) và \(f'(x)>0,\,\,\forall x\in \left( 0;\,+\infty 

Câu hỏi số 221617:
Thông hiểu

 Cho hàm số \(y=f(x)\) có đạo hàm trên \(\mathbb{R}\) và \(f'(x)>0,\,\,\forall x\in \left( 0;\,+\infty  \right)\). Biết \(f(1)=2\). Khẳng định nào dưới đây có thể xảy ra?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:221617
Phương pháp giải

Dựa vào tính đơn điệu của hàm số để loại trừ đáp án sai dựa vào tính đơn điệu của hàm số.

Giải chi tiết

Vì \(f'(x)>0,\,\,\forall x\in \left( 0;\,+\infty  \right)\) nên hàm số \(y=f(x)\)đồng biến trên khoảng \(\left( 0;\,+\infty  \right)\)

\(\Rightarrow \) Loại bỏ các đáp án:

+) Đáp án A (do \(f(2)>f(1)=2\)),

+) Đáp án B (do \(2017<2018\Rightarrow f(2017)<f(2018)\),

+) Đáp án D (do \(f(3)>f(2)>f(1)=2\Rightarrow f(2)+f(3)>2+2\Leftrightarrow f(2)+f(3)>4\)).

Như vậy, chỉ có khẳng định ở đáp án C là có thể xảy rA.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com