Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho 3 đường thẳng a; b và đường thẳng c sao cho:\(a\cap c=\left\{ A \right\};\,\,b\cap c=\left\{ B

Câu hỏi số 267540:
Thông hiểu

Cho 3 đường thẳng a; b và đường thẳng c sao cho:\(a\cap c=\left\{ A \right\};\,\,b\cap c=\left\{ B \right\}\). Trong các góc tạo thành có một cặp góc đồng vị bằng nhau.

a) Vì sao mỗi cặp góc đồng vị còn lại cũng bằng nhau?

b) Vì sao mỗi cặp góc so le trong bằng nhau?

c) Vì sao mỗi cặp góc trong cùng phía bù nhau?

Quảng cáo

Câu hỏi:267540
Phương pháp giải

Áp dụng khái niệm hai góc đồng vị, so le trong, trong cùng phía.

Giải chi tiết

Ta có: \(\widehat{{{A}_{1}}}=\widehat{{{B}_{1}}}\)

a) Các cặp góc đồng vị còn lại là: \(\widehat{{{A}_{4}}}\) và \(\widehat{{{B}_{4}}}\), \(\widehat{{{A}_{3}}}\) và \(\widehat{{{B}_{3}}}\), \(\widehat{{{A}_{2}}}\) và \(\widehat{{{B}_{2}}}\).

Ta có: +) \(\left\{ \begin{align} & \widehat{{{A}_{2}}}+\widehat{{{A}_{1}}}={{180}^{0}} \\ & \widehat{{{B}_{2}}}+\widehat{{{B}_{1}}}={{180}^{0}} \\\end{align} \right.\) (2 góc kề bù)

Mà \(\widehat{{{A}_{1}}}=\widehat{{{B}_{1}}}\left( gt \right)\Rightarrow \widehat{{{A}_{2}}}=\widehat{{{B}_{2}}}\)

+) \(\left\{ \begin{align}  & \widehat{{{A}_{3}}}=\widehat{{{A}_{1}}} \\ & \widehat{{{B}_{3}}}=\widehat{{{B}_{1}}} \\\end{align} \right.\) (đối đỉnh)

Mà \(\widehat{{{A}_{1}}}=\widehat{{{B}_{1}}}\left( gt \right)\Rightarrow \widehat{{{A}_{3}}}=\widehat{{{B}_{3}}}\)

+) \(\left\{ \begin{align}  & \widehat{{{A}_{4}}}=\widehat{{{A}_{2}}} \\& \widehat{{{B}_{4}}}=\widehat{{{B}_{2}}} \\\end{align} \right.\) (đối đỉnh)

Mà \(\widehat{{{A}_{2}}}=\widehat{{{B}_{2}}}\left( cmt \right)\Rightarrow \widehat{{{A}_{4}}}=\widehat{{{B}_{4}}}\)

b) Các cặp góc so le trong là: \(\widehat{{{A}_{3}}}\) và \(\widehat{{{B}_{1}}}\), \(\widehat{{{A}_{4}}}\) và \(\widehat{{{B}_{2}}}\).

Ta có: +) \(\widehat{{{A}_{3}}}=\widehat{{{A}_{1}}}\) (đối đỉnh) mà \(\widehat{{{A}_{1}}}=\widehat{{{B}_{1}}}\left( gt \right)\Rightarrow \widehat{{{A}_{3}}}=\widehat{{{B}_{1}}}\)

+) \(\widehat{{{B}_{4}}}=\widehat{{{B}_{2}}}\) (đối đỉnh)

Mà \(\widehat{{{A}_{4}}}=\widehat{{{B}_{4}}}\left( cmt \right)\Rightarrow \widehat{{{A}_{4}}}=\widehat{{{B}_{2}}}\)

c) Các cặp góc trong cùng phía là: \(\widehat{{{A}_{3}}}\) và \(\widehat{{{B}_{2}}}\), \(\widehat{{{A}_{4}}}\) và \(\widehat{{{B}_{1}}}\)

Ta có: +) \(\widehat{{{A}_{4}}}+\widehat{{{A}_{3}}}={{180}^{0}}\)(kề bù) mà \(\widehat{{{B}_{1}}}=\widehat{{{A}_{3}}}\left( cmt \right)\Rightarrow \widehat{{{A}_{4}}}+\widehat{{{B}_{1}}}={{180}^{0}}\)

+) \(\widehat{{{B}_{1}}}+\widehat{{{B}_{2}}}={{180}^{0}}\) (kề bù)

Mà \(\widehat{{{A}_{1}}}=\widehat{{{B}_{1}}}\left( gt \right)\) và \(\widehat{{{A}_{1}}}=\widehat{{{A}_{3}}}\) (đối đỉnh) \(\Rightarrow \widehat{{{B}_{1}}}=\widehat{{{A}_{3}}}\) \(\Rightarrow \widehat{{{B}_{2}}}+\widehat{{{A}_{3}}}={{180}^{0}}\)

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com