Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số tự nhiên n để \((3n + 5)\,\, \vdots \,\,(n + 1)\)

Câu hỏi số 281401:
Vận dụng cao

Tìm số tự nhiên n để \((3n + 5)\,\, \vdots \,\,(n + 1)\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:281401
Phương pháp giải

- Tách \(3n + 5 = 3n + 3 + 2 = 3\left( {n + 1} \right) + 2.\)

Khi đó \((3n + 5):(n + 1) = 3 + \frac{2}{{n + 1}}\).

Để \(3n + 5\)  chia hết cho \(n + 1\)  thì 2 phải chia hết cho \(n + 1\), suy ra \(n + 1 \in U\left( 2 \right),\)  từ đó ta tìm được \(n.\)

Giải chi tiết

Ta có : \(3n + 5 = 3n + 3 + 2 = 3\left( {n + 1} \right) + 2.\)

Khi đó ta có: \((3n + 5):(n + 1) = \frac{{3.(n + 1)}}{{n + 1}} + \frac{2}{{n + 1}} = 3 + \frac{2}{{n + 1}}\).

Để \(3n + 5\)  chia hết cho \(n + 1\)  thì 2 phải chia hết cho \(n + 1\), suy ra \(n + 1 \in U\left( 2 \right).\) 

Lại có: \(U\left( 2 \right) = \left\{ { - 2; - 1;\;1;\;2} \right\}.\)

Ta có bảng sau:

Vì  n là số tự nhiên nên \(n \in {\rm{\{ 0;}}\,\,1{\rm{\} }}\).
Vậy để \(3n + 5\) chia hết cho \(n + 1\) thì \(n \in {\rm{\{ 0}}\,{\rm{;}}\,\,{\rm{1\} }}\).

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com