Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Đồ thị hàm số \(y = {x^3} - 3{x^2} - 9x + 2\) có hai điểm cực trị là \(A,\;B.\) Điểm nào sau đây

Câu hỏi số 303683:
Vận dụng

Đồ thị hàm số \(y = {x^3} - 3{x^2} - 9x + 2\) có hai điểm cực trị là \(A,\;B.\) Điểm nào sau đây thuộc đường thẳng \(AB?\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:303683
Phương pháp giải

+) Hoành độ các điểm cực trị là các nghiệm của phương trình \(y' = 0.\)

+) Tìm tọa độ các điểm cực trị sau đó lập phương trình của đường thẳng qua hai điểm cực trị đó. Sau đó thử các điểm ở các đáp án xem điểm nào có tọa độ thỏa mãn phương trình đường thẳng thì chọn điểm đó.

+)  Lập phương trình đường thẳng đi qua hai điểm \(A\left( {{x_A};\;{y_A}} \right),\;\;B\left( {{x_B};\;{y_B}} \right)\) theo công thức:

Giải chi tiết

Ta có: \(y' = 3{x^2} - 6x - 9 \Rightarrow y' = 0 \Leftrightarrow 3{x^2} - 6x - 9 = 0 \) \(\Leftrightarrow \left[ \begin{array}{l}x = 3 \Rightarrow y =  - 25\\x =  - 1 \Rightarrow y = 7\end{array} \right.\)

\( \Rightarrow A\left( {3; - 25} \right),\;B\left( { - 1;\;7} \right).\)

Phương trình đường thẳng AB là:

\(\dfrac{{x + 1}}{{3 + 1}} = \dfrac{{y - 7}}{{ - 25 - 7}} \Leftrightarrow  - 32\left( {x + 1} \right) = 4\left( {y - 7} \right)\)

\( \Leftrightarrow  - 8x - 8 = y - 7 \Leftrightarrow 8x + y + 1 = 0.\)

Thay tọa độ các điểm ở các đáp án vào phương trình đường thẳng AB ta thấy chỉ có điểm \(M\left( {0; - 1} \right)\) thỏa mãn.

Chọn  A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com