Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ Hàm số \(g\left( x \right) =

Câu hỏi số 305027:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ

Hàm số \(g\left( x \right) = f\left( {2{x^2} - \frac{5}{2}x - \frac{3}{2}} \right)\) nghịch biến trên khoảng nào trong các khoảng sau?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:305027
Phương pháp giải

+) Sử dụng công thức tính đạo hàm của hàm hợp tính \(g'\left( x \right)\).

+) Hàm số \(y = g\left( x \right)\) nghịch biến trên \(\left( {a;b} \right) \Leftrightarrow g'\left( x \right) \le 0\,\,\forall x \in \left( {a;b} \right)\) và bằng 0 tại hữu hạn điểm.

+) Dựa vào các đáp án, chọn \({x_0}\) thuộc các khoảng trong các đáp án đã cho, nếu \(g'\left( {{x_0}} \right) > 0 \Rightarrow \) Loại đáp án chứa \({x_0}\) đó và chọn đáp án đúng.

Giải chi tiết

Ta có : \(g'\left( x \right) = \left( {4x - \frac{5}{2}} \right)f'\left( {2{x^2} - \frac{5}{2}x - \frac{3}{2}} \right)\).

Đến đây thử từng đáp án ta có :

Chọn \(x = 0 \Rightarrow g'\left( 0 \right) = \frac{{ - 5}}{2}.f'\left( {\frac{{ - 3}}{2}} \right) > 0 \Rightarrow \) Loại đáp án A, C.

Chọn \(x = 3 \Rightarrow g'\left( 3 \right) = \frac{{19}}{2}.f'\left( 9 \right) > 0 \Rightarrow \) Loại đáp án D.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com