Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình: \({x^2} - 2mx - 4m - 5 = 0.\) a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân

Câu hỏi số 325503:
Vận dụng

Cho phương trình: \({x^2} - 2mx - 4m - 5 = 0.\)

a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt với mọi \(m.\)

b) Tìm \(m\) để phương trình có 2 nghiệm phân biệt thỏa mãn: \(x_1^2 + x_2^2 - {x_1}{x_2} = 2{x_1} + 2{x_2} + 27.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:325503
Phương pháp giải

Bước 1: Tìm \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},{x_2}\) : Phương trình (1) có hai nghiệm phân biệt \({x_1},{x_2} \Leftrightarrow \Delta \,\,\left( {\Delta '} \right) > 0.\)

 Bước 2: Phân tích biểu thức A về dạng chứa các hệ thức Viet sau đó áp dụng hệ thức Vi-et vào tìm được m và đối chiếu với điều kiện sau đó kết luận.

Hệ thức Viet như sau: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - b}}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\)

Giải chi tiết

Cho phương trình: \({x^2} - 2mx - 4m - 5 = 0.\)

a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt với mọi m.

Ta cosL \(\Delta ' = {m^2} + 4m + 5 = {(m + 2)^2} + 1 > 0,\forall m\)

Do đó phương trình trên luôn có 2 nghiệm phân biệt với mọi \(m.\)

b) Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn: \(x_1^2 + x_2^2 - {x_1}{x_2} = 2{x_1} + 2{x_2} + 27.\)

Áp dụng định lý Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} =  - 4m - 5\end{array} \right.\)

Theo đề bài ta có :

\(\begin{array}{l}x_1^2 + x_2^2 - {x_1}{x_2} = 2{x_1} + 2{x_2} + 27.\\ \Leftrightarrow {({x_1} + {x_2})^2} - 3{x_1}{x_2} - 2({x_1} + {x_2}) - 27 = 0\\ \Leftrightarrow 4{m^2} + 3(4m + 5) - 4m - 27 = 0\\ \Leftrightarrow 4{m^2} + 8m - 12 = 0\\ \Leftrightarrow {m^2} + 2m - 3 = 0\\ \Leftrightarrow \left( {m - 1} \right)\left( {m + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = 0\\m + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 3\end{array} \right..\end{array}\)

Vậy \(m = 1\,;\,\,m =  - 3\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com