Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho một hình nón đỉnh \(I\) có đường tròn đáy là đường tròn đường kính \(AB = 6cm\) và

Câu hỏi số 381563:
Vận dụng

Cho một hình nón đỉnh \(I\) có đường tròn đáy là đường tròn đường kính \(AB = 6cm\) và đường cao bằng \(3\sqrt 3 cm.\) Gọi \(\left( S \right)\) là mặt cầu chứa đỉnh \(I\) và đường tròn đáy của hình nón. Bán kính của mặt cầu \(\left( S \right)\) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:381563
Phương pháp giải

- Xác định tâm mặt cầu.

- Chứng minh tâm mặt cầu trùng với tâm đường tròn ngoại tiếp tam giác IAB.

- Chứng minh tam giác IAB đều.

- Sử dụng công thức tính nhanh bán kính đường tròn ngoại tiếp tam giác đều cạnh a là \(R = \dfrac{{a\sqrt 3 }}{2}\).

Giải chi tiết

Mặt cầu chứa đỉnh I chứa đường tròn đường kính AB nên mặt cầu đi qua A, B.

Do đó bán kính mặt cầu chính là bán kính đường tròn ngoại tiếp tam giác IBC.

Tam giác IABIA = IB = l, suy ra tam giác IAB cân tại I.

Gọi H là trung điểm của AB \( \Rightarrow SH \bot AB\) và AH = 3cm, \(IH = 3\sqrt 3 cm\).

Áp dụng định lí Pytago trong tam giác vuông IAH ta có:

\(IA = \sqrt {I{H^2} + A{H^2}}  = \sqrt {27 + 9}  = 6\,\,\left( {cm} \right) = IB\).

\( \Rightarrow \Delta IAB\) đều cạnh 6cm.

Vậy bán kính đường tròn ngoại tiếp tam giác IAB là \(R = \dfrac{{6\sqrt 3 }}{2} = 3\sqrt 3 \,\,\left( {cm} \right)\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com