Cho Parabol \(\left( P \right):\,y = \dfrac{3}{2}{x^2}\) và đường thẳng \(\left( d \right):\,y = -
Cho Parabol \(\left( P \right):\,y = \dfrac{3}{2}{x^2}\) và đường thẳng \(\left( d \right):\,y = - \dfrac{3}{2}x + 3\)
1) Vẽ đồ thị của \(\left( P \right)\) và \(\left( d \right)\) trên cùng một mặt phẳng tọa độ.
2) Tìm tọa độ các giao điểm của \(\left( P \right)\) và \(\left( d \right)\) bằng phép tính.
Đáp án đúng là: A
Quảng cáo
1) Lập bảng giá trị, vẽ đồ thị các hàm số trên cùng hệ trục tọa độ.
2) Giải phương trình hoành độ giao điểm của hai đồ thị hàm số để tìm hoành độ giao điểm.
Thế hoành độ giao điểm vào một trong hai hàm số đã cho, để tìm tung độ giao điểm của hai đồ thị hàm số.
Đáp án cần chọn là: A
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










