Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho Parabol \(\left( P \right):\,y = \dfrac{3}{2}{x^2}\) và đường thẳng \(\left( d \right):\,y =  -

Câu hỏi số 419475:
Vận dụng

Cho Parabol \(\left( P \right):\,y = \dfrac{3}{2}{x^2}\) và đường thẳng \(\left( d \right):\,y =  - \dfrac{3}{2}x + 3\)

1) Vẽ đồ thị của \(\left( P \right)\) và \(\left( d \right)\) trên cùng một mặt phẳng tọa độ.

2) Tìm tọa độ các giao điểm của \(\left( P \right)\) và \(\left( d \right)\) bằng phép tính.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:419475
Phương pháp giải

1) Lập bảng giá trị, vẽ đồ thị các hàm số trên cùng hệ trục tọa độ.

2) Giải phương trình hoành độ giao điểm của hai đồ thị hàm số để tìm hoành độ giao điểm.

Thế hoành độ giao điểm vào một trong hai hàm số đã cho, để tìm tung độ giao điểm của hai đồ thị hàm số.

Giải chi tiết

1) Vẽ đồ thị của \(\left( P \right)\)\(\left( d \right)\) trên cùng một mặt phẳng tọa độ.

+) Vẽ parabol \(\left( P \right):\,\,y = \dfrac{3}{2}{x^2}\)

Ta có bảng giá trị:

Vậy \(\left( P \right):\,\,y = \dfrac{3}{2}{x^2}\) là đường cong đi qua các điểm: \(\left( { - 2;\,\,6} \right),\,\,\left( { - 1;\,\,\dfrac{3}{2}} \right),\,\,\left( {0;\,\,0} \right),\,\,\left( {1;\,\,\dfrac{3}{2}} \right),\,\,\left( {2;\,\,6} \right).\)

+) Vẽ \(\left( d \right):\,\,y =  - \dfrac{3}{2}x + 3\)

Ta có bảng giá trị:

Vậy \(\left( d \right):\,\,\,y =  - \dfrac{3}{2}x + 3\) là đường thẳng đi qua các điểm \(\left( {0;\,\,3} \right)\) và \(\left( {2;\,\,0} \right).\)

2) Tìm tọa độ giao điểm của \(\left( P \right)\)\(\left( d \right)\) bằng phép tính.

Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{3}{2}{x^2} =  - \dfrac{3}{2}x + 3\\ \Leftrightarrow 3{x^2} =  - 3x + 6\\ \Leftrightarrow 3{x^2} + 3x - 6 = 0\\ \Leftrightarrow {x^2} + x - 2 = 0\\ \Leftrightarrow {x^2} + 2x - x - 2 = 0\\ \Leftrightarrow x\left( {x + 2} \right) - \left( {x + 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 1\end{array} \right.\end{array}\)

+) Với \(x =  - 2\) \( \Rightarrow y = \dfrac{3}{2}.{\left( { - 2} \right)^2} = 6\) \( \Rightarrow A\left( { - 2;\,\,6} \right).\)

+) Với \(x = 1\) \( \Rightarrow y = \dfrac{3}{2}{.1^2} = \dfrac{3}{2}\) \( \Rightarrow B\left( {1;\,\,\dfrac{3}{2}} \right)\)

Vậy \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\left( { - 2;\,\,6} \right)\) và \(B\left( {1;\,\,\dfrac{3}{2}} \right).\)

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com