Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn \(\left( {O;3cm} \right)\) có đường kính \(AB\) và tiếp tuyến \(Ax\). Trên \(Ax\) lấy

Câu hỏi số 419479:
Vận dụng

Cho đường tròn \(\left( {O;3cm} \right)\) có đường kính \(AB\) và tiếp tuyến \(Ax\). Trên \(Ax\) lấy điểm \(C\) sao cho \(AC = 8cm,\,BC\) cắt đường tròn \(\left( O \right)\) tại \(D.\) Đường phân giác của góc \(CAD\) cắt đường tròn \(\left( O \right)\) tại \(M\) và cắt \(BC\) tại \(N.\)

1) Tính độ dài đoạn thẳng \(AD\).

2) Gọi \(E\) là giao điểm của \(AD\) và \(MB\). Chứng minh tứ giác \(MNDE\) nội tiếp được trong đường tròn.

3) Chứng minh tam giác \(ABN\) là tam giác cân.

4) Kẻ \(EF\) vuông góc với \(AB\) \( (F \in AB).\) Chứng minh: \(N,\,E,\,F\) thẳng hàng.

Quảng cáo

Câu hỏi:419479
Phương pháp giải

1) Tính độ dài đoạn thẳng \(AD\) bằng hệ thức lượng trong tam giác \(CAB\) vuông tại \(A\) có đường cao \(AD.\)

2) Chứng minh tứ giác nội tiếp bằng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối diện bằng \({180^0}.\)

3) Chứng minh tam giác \(ABN\) cân dựa vào tính chất của tam giác cân.

4) Áp dụng tiên đề Ơ-clit để chứng minh ba điểm \(N,\,\,E,\,\,F\) thẳng hàng.

Giải chi tiết

1) Tính độ dài đoạn thẳng \(AD\).

Vì \(\angle ADB\) nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên \(\angle ADB = {90^0}\) \( \Rightarrow AD \bot BD\) hay \(AD \bot BC\).

Ta có: \(Ax\) là tiếp tuyến của \(\left( O \right)\) tại \(A\) nên \(Ax \bot AB\) hay \(AB \bot AC\).

            \(AB\) là đường kính của \(\left( {O;3cm} \right)\) nên \(AB = 2.3 = 6\,\,\left( {cm} \right)\).

Do đó tam giác \(ABC\) vuông tại \(A\) có đường cao \(AD\).

Áp dụng hệ thức lượng trong tam giác vuông \(ABC\) ta có:

\(\begin{array}{l}\,\,\,\,\,\dfrac{1}{{A{D^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}} \Rightarrow \dfrac{1}{{A{D^2}}} = \dfrac{1}{{{6^2}}} + \dfrac{1}{{{8^2}}}\\ \Rightarrow \dfrac{1}{{A{D^2}}} = \dfrac{{25}}{{576}} \Rightarrow A{D^2} = \dfrac{{675}}{{25}}\\ \Rightarrow AD = \dfrac{{24}}{5} = 4,8\,\,\left( {cm} \right)\end{array}\) 

Vậy \(AD = 4,8\,\,cm\).

2) Gọi \(E\) là giao điểm của \(AD\)\(MB\). Chứng minh rằng tứ giác \(MNDE\) nội tiếp được trong đường tròn.

Ta có: \(AD \bot BC\,\,\left( {cmt} \right) \Rightarrow \angle EDN = {90^0}\).

Tương tự ta có: \(\angle AMB\) là góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên \(\angle AMB = {90^0}\)

\( \Rightarrow AM \bot BM\) hay \(AN \bot BM\).

\( \Rightarrow \angle EMN = {90^0}\).

Xét tứ giác \(MNDE\) có \(\angle EDN + \angle EMN = {90^0} + {90^0} = {180^0}\).

Vậy tứ giác \(MNDE\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng \({180^0}\)).

3) Chứng minh tam giác \(ABN\) là tam giác cân.

Ta có: \(\angle CAN = \angle ABM\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung \(AM\)).

          \(\angle MAD = \angle MBD\) (hai góc nội tiếp cùng chắn cung \(MD\)).

Mà \(\angle CAN = \angle MAD\) (gt) \( \Rightarrow \angle ABM = \angle MBD\), do đó \(BM\) là tia phân giác của \(\angle ABN\).

Xét tam giác \(ABN\) có \(BM\) là đường cao đồng thời là đường phân giác nên tam giác \(ABN\) cân tại \(B\)  (đpcm).

4) Kẻ \(EF\) vuông góc với \(AB\) (\(F\) thuộc \(AB\)). Chứng minh: \(N,\,\,E,\,\,F\) thẳng hàng.

Xét tam giác \(ABN\) có:

\(\begin{array}{l}AD \bot BN\,\,\left( {cmt} \right)\\BM \bot AN\,\,\left( {cmt} \right)\\AD \cap BM = \left\{ E \right\}\,\,\left( {gt} \right)\end{array}\)

\( \Rightarrow E\) là trực tâm của tam giác \(ABN\).

Do đó \(NE\) là đường cao thứ ba của tam giác \(ABN\) nên \(NE \bot AB\).

Lại có \(EF \bot AB\,\,\left( {gt} \right)\).

\( \Rightarrow \) Qua điểm \(E\) nằm ngoài đường thẳng \(AB\) kẻ được hai đường thẳng \(EF,\,\,NE\) cùng vuông góc với \(AB\).

\( \Rightarrow NE \equiv EF\) (Tiên đề Ơ-clit).

Vậy \(N,\,\,E,\,\,F\) thẳng hàng (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com