Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x  + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left(

Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x  + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x  + 2}}{{\sqrt x  - 2}} + 3} \right)\) với \(x \ge 0,\,\,x \ne 1\) và \(x \ne 4\).

Trả lời cho các câu 422616, 422617 dưới đây:

Câu hỏi số 1:
Vận dụng

Rút gọn biểu thức \(P\).

Đáp án đúng là: B

Câu hỏi:422617
Giải chi tiết

Với \(x \ge 0,\,\,x \ne 1\) và \(x \ne 4\) ta có:

\(\begin{array}{l}P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x  + 2}} - \dfrac{{8x}}{{x - 4}}} \right):\left( {\dfrac{{\sqrt x  + 2}}{{\sqrt x  - 2}} + 3} \right)\\P = \left( {\dfrac{{4\sqrt x }}{{\sqrt x  + 2}} - \dfrac{{8x}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}}} \right):\dfrac{{\sqrt x  + 2 + 3\left( {\sqrt x  - 2} \right)}}{{\sqrt x  - 2}}\\P = \dfrac{{4\sqrt x \left( {\sqrt x  - 2} \right) - 8x}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}}:\dfrac{{\sqrt x  + 2 + 3\sqrt x  - 6}}{{\sqrt x  - 2}}\\P = \dfrac{{4x - 8\sqrt x  - 8x}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}}:\dfrac{{4\sqrt x  - 4}}{{\sqrt x  - 2}}\\P = \dfrac{{ - 8\sqrt x  - 4x}}{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}}.\dfrac{{\sqrt x  - 2}}{{4\left( {\sqrt x  - 1} \right)}}\\P = \dfrac{{ - 4\sqrt x \left( {2 + \sqrt x } \right)}}{{\sqrt x  + 2}}.\dfrac{1}{{4\left( {\sqrt x  - 1} \right)}}\\P = \dfrac{{ - \sqrt x }}{{\sqrt x  - 1}} = \dfrac{{\sqrt x }}{{1 - \sqrt x }}\end{array}\)

Câu hỏi số 2:
Vận dụng

Tìm các giá trị của \(x\) để \(P =  - 4\).

Đáp án đúng là: A

Câu hỏi:422618
Giải chi tiết

Ta có:

\(\begin{array}{l}P =  - 4 \Leftrightarrow \dfrac{{\sqrt x }}{{1 - \sqrt x }} =  - 4\\ \Leftrightarrow \sqrt x  =  - 4\left( {1 - \sqrt x } \right)\\ \Leftrightarrow \sqrt x  =  - 4 + 4\sqrt x \\ \Leftrightarrow 3\sqrt x  = 4\\ \Leftrightarrow \sqrt x  = \dfrac{4}{3}\\ \Leftrightarrow x = \dfrac{{16}}{9}\,\,\left( {tm} \right)\end{array}\)

Vậy để \(P =  - 4\) thì \(x = \dfrac{{16}}{9}\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com