Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Một mảnh đất hình chữ nhật có chu vi bằng 28 mét và độ dài đường chéo bằng 10 mét. Tính chiều dài và chiều rộng của mảnh đất đó theo đơn vị mét.
Đáp án đúng là: B
Quảng cáo
Gọi chiều dài của mảnh đất là \(x\;\left( m \right),\;\;\left( {\dfrac{{14}}{2} = 7 < x < 14} \right).\)
Khi đó chiều rộng của mảnh đất là: \(14 - x\;\;\left( m \right).\)
Rút ra độ dài đường chéo theo \(x\), sau đó giải phương trình ẩn \(x\).
Nửa chu vi của mảnh đất hình chữ nhật là \(28:2 = 14\;\left( m \right).\)
Gọi chiều dài của mảnh đất là \(x\;\left( m \right),\;\;\left( {\dfrac{{14}}{2} = 7 < x < 14} \right).\)
Khi đó chiều rộng của mảnh đất là: \(14 - x\;\;\left( m \right).\)
Độ dài đường chéo của mảnh đất hình chữ nhật là \(10m\) nên ta có phương trình:
\(\begin{array}{l}\;\;\;\;{x^2} + {\left( {14 - x} \right)^2} = {10^2}\\ \Leftrightarrow 2{x^2} - 28x + 196 - 100 = 0\\ \Leftrightarrow {x^2} - 14x + 48 = 0\\ \Leftrightarrow \left( {x - 6} \right)\left( {x - 8} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 6 = 0\\x - 8 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 6\;\;\;\left( {ktm} \right)\\x = 8\;\;\;\left( {tm} \right)\end{array} \right..\end{array}\)
Với \(x = 8\) thì chiều rộng của mảnh đất là: \(14 - 8 = 6\;m.\)
Vậy chiều dài của mảnh đất là \(8m,\) chiều rộng của mảnh đất là \(6m.\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com