Tính thể tích \(V\)của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng
Tính thể tích \(V\)của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\)\(\left( {0 \le x \le \pi } \right)\) là một tam giác đều cạnh \(2\sqrt {\sin x} \).
Đáp án đúng là: C
Quảng cáo
Thể tích của phần vật thể nằm giữa hai mặt phẳng \(x = a\) và \(x = b\), thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\,\,\left( {a \le x \le b} \right)\) có diện tích \(S\) là \(V = \int\limits_a^b {S\left( x \right)dx} \).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












