Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(A = 1 + 2 + {2^2} + ... + {2^{2020}} + {2^{2021}}\) và \(B = {2^{2022}}\). Chứng minh A và B là hai số

Câu hỏi số 562448:
Vận dụng cao

Cho \(A = 1 + 2 + {2^2} + ... + {2^{2020}} + {2^{2021}}\) và \(B = {2^{2022}}\). Chứng minh A và B là hai số tự nhiên liên tiếp.

Quảng cáo

Câu hỏi:562448
Phương pháp giải

Tính 2A và sử dụng phép trừ 2A – A, từ đó tính A.

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,A = 1 + 2 + {2^2} + ... + {2^{2020}} + {2^{2021}}\\ \Rightarrow 2A = 2 + {2^2} + {2^3} + ... + {2^{2021}} + {2^{2022}}\\ \Rightarrow 2A - A = {2^{2022}} - 1\\ \Rightarrow A = {2^{2022}} - 1\end{array}\)

Vậy A và B là hai số tự nhiên liên tiếp.

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com