Tìm \(x\), biết:
Tìm \(x\), biết:
Trả lời cho các câu 590359, 590360, 590361, 590362 dưới đây:
\(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)
Đáp án đúng là: A
a) Thực hiện các phép toán với số hữu tỉ
Vận dụng quy tắc chuyển vế, tìm \(x\).
a) \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)
\(\begin{array}{l}\dfrac{1}{3}x + \dfrac{2}{5}x - \dfrac{2}{5} = 0\\x.\left( {\dfrac{1}{3} + \dfrac{2}{5}} \right) = \dfrac{2}{5}\\x.\left( {\dfrac{5}{{15}} + \dfrac{6}{{15}}} \right) = \dfrac{2}{5}\\x.\dfrac{{11}}{{15}} = \dfrac{2}{5}\\x = \dfrac{2}{5}:\dfrac{{11}}{{15}}\\x = \dfrac{2}{5}.\dfrac{{15}}{{11}}\\x = \dfrac{6}{{11}}\end{array}\)
Vậy \(x = \dfrac{6}{{11}}\)
\({\left( {2x + 1} \right)^2} = \dfrac{{36}}{{25}}\)
Đáp án đúng là: C
b) Giải \({\left[ {A\left( x \right)} \right]^2} = {a^2} = {\left( { - a} \right)^2}\)
Trường hợp 1: \(A\left( x \right) = a\)
Trường hợp 2: \(A\left( x \right) = - a\)
b) \({\left( {2x + 1} \right)^2} = \dfrac{{36}}{{25}}\)
\({\left( {2x + 1} \right)^2} = {\left( {\dfrac{6}{5}} \right)^2} = {\left( { - \dfrac{6}{5}} \right)^2}\)
Trường hợp 1:
\(\begin{array}{l}2x + 1 = \dfrac{6}{5}\\2x = \dfrac{6}{5} - 1 = \dfrac{6}{5} - \dfrac{5}{5}\\2x = \dfrac{1}{5}\\x = \dfrac{1}{5}:2 = \dfrac{1}{5}.\dfrac{1}{2}\\x = \dfrac{1}{{10}}\end{array}\)
Trường hợp 2:
\(\begin{array}{l}2x + 1 = - \dfrac{6}{5}\\2x = \dfrac{{ - 6}}{5} - 1 = \dfrac{{ - 6}}{5} - \dfrac{5}{5}\\2x = \dfrac{{ - 11}}{5}\\x = \dfrac{{ - 11}}{5}:2 = \dfrac{{ - 11}}{5}.\dfrac{1}{2}\\x = \dfrac{{ - 11}}{{10}}\end{array}\)
Vậy \(x \in \left\{ {\dfrac{1}{{10}};\dfrac{{ - 11}}{{10}}} \right\}\)
\(\dfrac{1}{2}x + \sqrt {0,04} = \sqrt {1,96} \)
Đáp án đúng là: B
c) Tính căn bậc hai số học của số thực
Thực hiện các phép toán với số hữu tỉ
Vận dụng quy tắc chuyển vế, tìm \(x\).
c) \(\dfrac{1}{2}x + \sqrt {0,04} = \sqrt {1,96} \)
\(\begin{array}{l}\dfrac{1}{2}x + \sqrt {{{\left( {0,2} \right)}^2}} = \sqrt {{{\left( {1,4} \right)}^2}} \\\dfrac{1}{2}x + 0,2 = 1,4\\\dfrac{1}{2}x = 1,4 - 0,2\\\dfrac{1}{2}x = 1,2\\x = 1,2:\dfrac{1}{2} = 1,2.2\\x = 2,4\end{array}\)
Vậy \(x = 2,4\).
\(\left| {\left| {2x - 1} \right| + \dfrac{1}{2}} \right| = \dfrac{4}{5}\)
Đáp án đúng là: D
d) \(\left| x \right| = a\)
Trường hợp \(a < 0\), khi đó phương trình không có nghiệm \(x\)
Trường hợp \(a > 0\), vận dụng kiến thức giá trị tuyệt đối của một số thực: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,\,x > 0\\ - x\,\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,khi\,\,\,x = 0\end{array} \right.\)
d) \(\left| {\left| {2x - 1} \right| + \dfrac{1}{2}} \right| = \dfrac{4}{5}\)
Trường hợp 1:
\(\begin{array}{l}\left| {2x - 1} \right| + \dfrac{1}{2} = \dfrac{4}{5}\\\left| {2x - 1} \right| = \dfrac{4}{5} - \dfrac{1}{2} = \dfrac{8}{{10}} - \dfrac{5}{{10}}\\\left| {2x - 1} \right| = \dfrac{3}{{10}}\end{array}\)
*\(2x - 1 = \dfrac{3}{{10}}\)
\(\begin{array}{l}2x = \dfrac{3}{{10}} + 1 = \dfrac{3}{{10}} + \dfrac{{10}}{{10}}\\2x = \dfrac{{13}}{{10}}\\x = \dfrac{{13}}{{10}}:2 = \dfrac{{13}}{{10}}.\dfrac{1}{2}\\x = \dfrac{{13}}{{20}}\end{array}\)
*\(2x - 1 = \dfrac{{ - 3}}{{10}}\)
\(\begin{array}{l}2x = \dfrac{{ - 3}}{{10}} + 1 = \dfrac{{ - 3}}{{10}} + \dfrac{{10}}{{10}}\\2x = \dfrac{7}{{10}}\\x = \dfrac{7}{{10}}:2 = \dfrac{7}{{10}}.\dfrac{1}{2}\\x = \dfrac{7}{{20}}\end{array}\)
Trường hợp 2:
\(\begin{array}{l}\left| {2x - 1} \right| + \dfrac{1}{2} = - \dfrac{4}{5}\\\left| {2x - 1} \right| = - \dfrac{4}{5} - \dfrac{1}{2} = \dfrac{{ - 8}}{{10}} - \dfrac{5}{{10}}\\\left| {2x - 1} \right| = \dfrac{{ - 13}}{{10}}\end{array}\)
Vì \(\dfrac{{ - 13}}{{10}} < 0\) nên không có \(x\) thỏa mãn \(\left| {2x - 1} \right| = \dfrac{{ - 13}}{{10}}\).
Vậy \(x \in \left\{ {\dfrac{{13}}{{20}};\dfrac{7}{{20}}} \right\}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com