Tìm giá trị nhỏ nhất của biểu thức \(A = {x^2} + \sqrt x - 113\) với \(x \ge 0\).
Tìm giá trị nhỏ nhất của biểu thức \(A = {x^2} + \sqrt x - 113\) với \(x \ge 0\).
Đáp án đúng là: C
Đánh giá các số hạng của tổng để tìm giá trị nhỏ nhất của \(A\).
Ta có: \({x^2} \ge 0;\sqrt x \ge 0\) với mọi số thực \(x \ge 0\) nên \({x^2} + \sqrt x \ge 0\) với mọi số thực \(x \ge 0\).
Suy ra \({x^2} + \sqrt x - 113 \ge - 113\) với mọi số thực \(x \ge 0.\) Hay \(A \ge - 113\) với mọi số thực \(x \ge 0.\)
Vậy giá trị nhỏ nhất của \(A\) là \( - 113\).
Dấu “=” xảy ra khi và chỉ khi \({x^2} = 0\) và \(\sqrt x = 0\). Suy ra \(x = 0\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com