Cho tam giác ABC vuông tại A có \(AC = 12cm,\,\,\angle B = {60^0}\). Hãy tính \(\angle C,\,\,AB,\,\,BC\) và
Cho tam giác ABC vuông tại A có \(AC = 12cm,\,\,\angle B = {60^0}\). Hãy tính \(\angle C,\,\,AB,\,\,BC\) và diện tích tam giác ABC.
Đáp án đúng là: D
Quảng cáo
Vận dụng định lí tổng ba góc trong một tam giác suy ra góc C.
Áp dụng tỉ số lượng giác của góc nhọn trong tam giác vuông, tính AB và BC
Vì tam giác ABC vuông tại A nên \(\angle B + \angle C = {90^0}\) \( \Rightarrow \angle C = {90^0} - \angle B = {90^0} - {60^0} = {30^0}\)
Ta có: \(AB = AC.\cot {60^0} = 12.\dfrac{{\sqrt 3 }}{3} = 4\sqrt 3 \approx 6,9\,\,\left( {cm} \right)\)
\(\sin {60^0} = \dfrac{{AC}}{{BC}} \Rightarrow BC = \dfrac{{AC}}{{\sin {{60}^0}}} = \dfrac{{12}}{{\dfrac{{\sqrt 3 }}{2}}} = 8\sqrt 3 \approx 13,9\,\,\left( {cm} \right)\)
Diện tích tam giác ABC là: \({S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.4\sqrt 3 .12 = 24\sqrt 3 \approx 41,6\,\,\left( {c{m^2}} \right)\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com