Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho đường tròn (O) đường kính \(AB = 2\sqrt 3 \,cm\) và C là điểm chính giữa của cung AB. Cung AmB

Câu hỏi số 597740:
Vận dụng

Cho đường tròn (O) đường kính \(AB = 2\sqrt 3 \,cm\) và C là điểm chính giữa của cung AB. Cung AmB có tâm C, bán kính CA (hình vẽ). Diện tích phần gạch chéo bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:597740
Phương pháp giải

Công thức tính diện tích hình tròn, hình tam giác, hình quạt.

Giải chi tiết

Diện tích của nửa đường tròn đường kính AB là: \({S_1} = \pi .{\left( {\dfrac{{2\sqrt 3 }}{2}} \right)^2}:2 = \dfrac{{3\pi }}{2}\)

Trong đường tròn (O) có C là điểm chính giữa cung AB nên CA = CB

Lại có C thuộc đường tròn (O) nên \(\angle ACB = {90^0}\)

Do đó, tam giác ABC vuông cân tại C, theo định lí Py – ta – go, ta có:

\(\begin{array}{l}A{B^2} = A{C^2} + B{C^2}\\ \Leftrightarrow A{B^2} = A{C^2} + A{C^2} = 2A{C^2}\\ \Leftrightarrow {\left( {2\sqrt 3 } \right)^2} = 2A{C^2}\\ \Rightarrow AC = \sqrt 6 \end{array}\)

Diện tích quạt \({S_{qCAB}} = \dfrac{{\pi .{{\left( {\sqrt 6 } \right)}^2}.90}}{{360}} = \dfrac{3}{2}\pi \)

Diện tích tam giác ABC là: \({S_{\Delta ABC}} = \dfrac{1}{2}.\sqrt 6 .\sqrt 6  = 3\)

Diện tích phần gạch chéo là: \(\dfrac{{3\pi }}{2} - \left( {\dfrac{{3\pi }}{2} - 3} \right) = 3\,\left( {c{m^2}} \right)\)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com