Đường tròn
Cho tam giác nhọn ABC có AB > AC. Gọi M là trung điểm của BC; H là trực tâm. AD, BE, CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác AEF và DKE. với K là giao điểm của EF và BC. Chứng minh rằng:
Trả lời cho các câu 1, 2 dưới đây:
Đáp án đúng là: A
Đáp án cần chọn là: A
Đáp án đúng là: A
Đáp án cần chọn là: A
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


= 900 nên tứ giác AEHF nội tiếp một đường tròn tâm chính là (C1) là trung điểm của AH
=
sđ
(1)
( cùng phụ với góc ACD) (2)
(3) (do đường trung tuyến ứng với cạnh huyền)









