Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau:Tổng số tiệm cận đứng và tiệm cận

Câu hỏi số 621514:
Nhận biết

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau:

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:621514
Phương pháp giải

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to  - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  - \infty \,\)thì \(x = a\)  là TCĐ của đồ thị hàm số.

Giải chi tiết

Ta có:

\(\mathop {\lim }\limits_{x \to  + \infty } f(x) = 0\) và \(\,\mathop {\lim }\limits_{x \to  - \infty } f(x) =  + \infty  \Rightarrow \) Đồ thị hàm số có 1 TCN là: \(y = 0\).

\(\mathop {\lim }\limits_{x \to  - {1^ - }} f(x) =  - \infty \,,\mathop {\lim }\limits_{x \to  - {1^ + }} f(x) =  + \infty \); \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) =  + \infty \,,\mathop {\lim }\limits_{x \to {1^ + }} f(x) =  - \infty  \Rightarrow \) Đồ thị hàm số có 2 TCĐ là: \(x = 1,x =  - 1\).

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là : 3.

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com