Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 1. Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} - 9 = 0\)\((1)\)(\(x\) là ẩn, \(m\) là tham

Câu hỏi số 658746:
Vận dụng

 1. Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} - 9 = 0\)\((1)\)(\(x\) là ẩn, \(m\) là tham số)

a) Giải phương trình (1) khi \(m =  - 3\).

b, Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện

2. Một trường học có mảnh vườn hình chữ nhật chu vi là 100m. Nhà trường tiến hành mở rộng mảnh vườn bằng cách tăng chiều dài thêm 5m và chiều rộng thêm 4m, khi đó diện tích tăng 240m2. Tính chiều dài và chiều rộng mảnh vường trước khi mở rộng.

 

 

Quảng cáo

Câu hỏi:658746
Phương pháp giải

 

 

 
Giải chi tiết

1. Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} - 9 = 0\)\((1)\)(\(x\) là ẩn, \(m\) là tham số)

a) Giải phương trình (1) khi \(m =  - 3\).

Thay \(m =  - 3\)vào (1) ta được:

\({x^2} - 2\left( { - 3 - 1} \right)x + {\left( { - 3} \right)^2} - 9 = 0\) \( \Leftrightarrow {x^2} + 8x = 0\)

\(\begin{array}{l} \Leftrightarrow x\left( {x + 8} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 8\end{array} \right.\end{array}\)

Vậy với \(m =  - 3\)thì phương trình có 2 nghiệm phân biệt\(x = 0\) hoặc \(x =  - 8\).

b, Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện \({x_1} - {x_2} = 2m - 10\).

+ Phương trình (1) có 2 nghiệm phân biệt \( \Leftrightarrow \Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - {m^2} + 9 > 0\)

   \(\begin{array}{l} \Leftrightarrow {m^2} - 2m + 1 - {m^2} + 9 > 0\\ \Leftrightarrow  - 2m + 10 > 0\\ \Leftrightarrow m < 5\end{array}\)

Theo hệ thức Vi-ét: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m - 1)\\{x_1}.{x_2} = {m^2} - 9\,\,\,(*)\end{array} \right.\)

+ Ta có: \({x_1} + {x_2} = 2(m - 1) \Rightarrow {x_1} = 2(m - 1) - {x_2}\)thay vào \({x_1} - {x_2} = 2m - 10\) ta được:

\(2(m - 1) - {x_2} - {x_2} = 2m - 10\)

\(\begin{array}{l} \Leftrightarrow 2(m - 1) - 2{x_2} = 2\left( {m - 5} \right)\\ \Leftrightarrow m - 1 - {x_2} = m - 5\end{array}\)

\(\begin{array}{l} \Rightarrow {x_2} = 4\\ \Rightarrow {x_1} = 2(m - 1) - 4 = 2m - 6\end{array}\)

Thay vào (*) ta được:

\(\left( {2m - 6} \right).4 = {m^2} - 9\)

\(\begin{array}{l} \Leftrightarrow {m^2} - 8m + 15 = 0\\ \Leftrightarrow {m^2} - 3m - 5m + 15 = 0\\ \Leftrightarrow m\left( {m - 3} \right) - 5\left( {m - 3} \right) = 0\\ \Leftrightarrow \left( {m - 3} \right)\left( {m - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 3\,\,\,\,(tm)\\m = 5\,\,\,\,(Ktm)\end{array} \right.\end{array}\)

Vậy \(m = 3\)là giá trị cần tìm.

 

 

2. Một trường học có mảnh vườn hình chữ nhật chu vi là 100m. Nhà trường tiến hành mở rộng mảnh vườn bằng cách tăng chiều dài thêm 5m và chiều rộng thêm 4m, khi đó diện tích tăng 240m2. Tính chiều dài và chiều rộng mảnh vường trước khi mở rộng.

Gọi chiều dài mảnh vườn trước khi mở rộng là \(x{\rm{ }}\left( m \right)\) (ĐK: 0 < x > 50).

Nửa chu vi mảnh vườn hình chữ nhật là \(100:2 = 50\)(m).

Suy ra, chiều rộng mảnh vườn trước khi mở rộng là: \(50 - x\) (m).

\( \Rightarrow \) Diện tích mảnh vườn trước khi mở rộng là \(x.\left( {50 - x} \right)\)(m2).

Chiều dài mảnh vườn sau khi mở rộng là \(x + 5\) (m).

Chiều rộng mảnh vườn sau khi mở rộng là \(50 - x + 4 = 54 - x\) (m).

Suy ra, diện tích mảnh vườn sau khi mở rộng là \(\left( {x + 5} \right).\left( {54 - x} \right)\) (m2).

Do diện tích sau khi mở rộng tăng 240m2 so với diện tích mảnh vườn ban đầu, nên ta có phương trình:

\(\left( {x + 5} \right).\left( {54 - x} \right) - x.\left( {50 - x} \right) = 240\)

         \(\begin{array}{l} \Leftrightarrow 54x - {x^2} + 270 - 5x - 50x + {x^2} = 240\\ \Leftrightarrow  - x + 270 = 240\end{array}\)

         \( \Rightarrow x = 30\) (TMĐK)

Vậy chiều dài mảnh vườn trước khi mở rộng là 30 m;

Chiều rộng rộng mảnh vườn trước khi mở rộng là 50 – 30 = 20 m.

 

 
Chú ý khi giải

 

 

 

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com