Cho hàm số \(f(x) = \dfrac{1}{2}{\log _2}\left( {\dfrac{{2x}}{{1 - x}}} \right)\). Khi đó a) \(f\left(
Cho hàm số \(f(x) = \dfrac{1}{2}{\log _2}\left( {\dfrac{{2x}}{{1 - x}}} \right)\). Khi đó
a) \(f\left( {\dfrac{2}{3}} \right) =\)
b) \(f(x) + f(1 - x) =\) với mọi \(x \in (0;1)\).
c) \(f\left( {\dfrac{1}{{2025}}} \right) + f\left( {\dfrac{2}{{2025}}} \right) + f\left( {\dfrac{3}{{2025}}} \right) + \cdots + f\left( {\dfrac{{2023}}{{2025}}} \right) + f\left( {\dfrac{{2024}}{{2025}}} \right) =\) .
Đáp án đúng là: \(\dfrac{1}{3}\), 1, 1012
tập xác định của hàm số là \(\mathcal{D} = (0;1)\)
a) \(f(x) = \dfrac{1}{2}{\log _2}\left( {\dfrac{{2x}}{{1 - x}}} \right) \Rightarrow f\left( {\dfrac{2}{3}} \right) = \dfrac{1}{2}{\log _2}\left( {\dfrac{{2.\dfrac{2}{3}}}{{1 - \dfrac{2}{3}}}} \right) = 1\) → b sai
b) \(f(x) + f(1 - x) = \dfrac{1}{2}{\log _2}\left( {\dfrac{{2x}}{{1 - x}}} \right) + \dfrac{1}{2}{\log _2}\left( {\dfrac{{2\left( {1 - x} \right)}}{{1 - \left( {1 - x} \right)}}} \right)\)
\(\begin{array}{l} = \dfrac{1}{2}\left[ {{{\log }_2}\left( {\dfrac{{2x}}{{1 - x}}} \right) + {{\log }_2}\left( {\dfrac{{2\left( {1 - x} \right)}}{x}} \right)} \right]\\ = \dfrac{1}{2}.{\log _2}\left( {\dfrac{{2x}}{{1 - x}}.\dfrac{{2\left( {1 - x} \right)}}{x}} \right) = 1\end{array}\)
c) \(f\left( {\dfrac{1}{{2025}}} \right) + f\left( {\dfrac{2}{{2025}}} \right) + f\left( {\dfrac{3}{{2025}}} \right) + \cdots + f\left( {\dfrac{{2023}}{{2025}}} \right) + f\left( {\dfrac{{2024}}{{2025}}} \right)\)
\(\begin{array}{l} = \dfrac{1}{2}{\log _2}\left( {\dfrac{{2.\dfrac{1}{{2025}}}}{{1 - \dfrac{1}{{2025}}}}} \right) + \dfrac{1}{2}{\log _2}\left( {\dfrac{{2.\dfrac{2}{{2025}}}}{{1 - \dfrac{2}{{2025}}}}} \right) + \dfrac{1}{2}{\log _2}\left( {\dfrac{{2.\dfrac{3}{{2025}}}}{{1 - \dfrac{3}{{2025}}}}} \right) + ... + \dfrac{1}{2}{\log _2}\left( {\dfrac{{2.\dfrac{{2024}}{{2025}}}}{{1 - \dfrac{{2024}}{{2025}}}}} \right)\\ = \dfrac{1}{2}.\log \left[ {\dfrac{{2.\dfrac{1}{{2025}}}}{{1 - \dfrac{1}{{2025}}}}.\dfrac{{2.\dfrac{2}{{2025}}}}{{1 - \dfrac{2}{{2025}}}}.\dfrac{{2.\dfrac{3}{{2025}}}}{{1 - \dfrac{3}{{2025}}}}....\dfrac{{2.\dfrac{{2024}}{{2025}}}}{{1 - \dfrac{{2024}}{{2025}}}}} \right]\\ = \dfrac{1}{2}.{\log _2}\left[ {{2^{2024}}.\dfrac{1}{{2024}}.\dfrac{2}{{2023}}.\dfrac{3}{{2022}}.....\dfrac{{2024}}{1}} \right] = \dfrac{1}{2}.2024 = 1012\end{array}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com