1) Giải phương trình $\sqrt{3x + 6} + \sqrt{x + 3} = 5$.2) Cho phương trình $x^{2} - 2\left( {m + 1} \right)x -
1) Giải phương trình $\sqrt{3x + 6} + \sqrt{x + 3} = 5$.
2) Cho phương trình $x^{2} - 2\left( {m + 1} \right)x - m^{2} - 2m - 2 = 0(1)$ (với $m$ là tham số). Chứng minh rằng với mọi $m$, phương trình (1) luôn có 2 nghiệm $x_{1},x_{2}$ trái dấu. Khi đó, tìm $m$ để biểu thức: $B = \dfrac{x_{1} + m + 1}{x_{2}} + \dfrac{x_{2} + m + 1}{x_{1}}$ đạt giá trị lớn nhất.
Quảng cáo
a) Chia các trường hợp:
Nếu $- 2 \leq x < 1$
Nếu $x > 1$
b) Áp dụng định lí Vi-ét.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










