Hình giải tích phẳng
Trong mặt phẳng toạ độ với hệ toạ độ Oxy cho tam giác ABC vuông tại A, biết B và C đối xứng nhau qua gốc toạ độ. Đường phân giác trong góc B của tam giác ABC là đường thẳng (d): x+2y-5=0. Tìm toạ độ các đỉnh tam giác, biết đường thẳng AC đi qua điểm K(6;2)
Đáp án đúng là: A
B(d): x+2y-5=0 nên gọi B(5-2b;b)
Vì B.C đối xứng nhau qua O =>C(2b-5;-b) vàO(0;0)BC
Gọi I đối xứng với O qua phân giác trong góc B là (d): x+2y-5=0
=>I(2;4) và IAB
Tam giác ABC vuông tại A nên: =(2b-3;4-b) vuông góc =(11-2b;2+b)
(2b-3)(11-2b)+(4-b)(2+b)=0 <=>
Với b=1=>B(3;1),C(-3;-1)=>A(3,1) B (loại)
Với b=5 =>B(-5;5);C(5;-5)=>
Vậy ;B(-5;5);C(5;-5)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com