Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABC có SA vuông góc với mặt đáy, \(SA = AB = AC = BC = a\) . Tính khoảng cách từ A

Câu hỏi số 193747:
Thông hiểu

Cho hình chóp S.ABC có SA vuông góc với mặt đáy, \(SA = AB = AC = BC = a\) . Tính khoảng cách từ A đến (SBC)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:193747
Phương pháp giải

Sử dụng phương pháp dựng khoảng cách từ chân đường vuông góc dến một mặt phẳng.

Giải chi tiết

Gọi M là trung điểm của BC

Vì tam giác ABC có \(AB = BC = CA = a\) nên \(\Delta ABC\) là tam giác đều

Suy ra trung tuyến AM đồng thời là đường cao

Ta có: \(\left. \begin{array}{l}BC \bot AM\\BC \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAM} \right)\)

Trong (SAM) kẻ \(AH \bot SM\)

Vì \(BC \bot \left( {SAM} \right)\,\,\left( {cmt} \right) \Rightarrow BC \bot AH\)

Suy ra \(AH \bot \left( {SBC} \right) \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AH\)

Ta có: \(AM = \frac{{a\sqrt 3 }}{2}\)

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AM \Rightarrow \Delta SAM\) vuông tại A

\( \Rightarrow \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{\frac{{3{a^2}}}{4}}} = \frac{7}{{3{a^2}}} \Rightarrow A{H^2} = \frac{{3{a^2}}}{7} \Rightarrow AH = \frac{{\sqrt 3 }}{{\sqrt 7 }}a\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com