Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \(\sin \left( {{{3x - 7\pi } \over 2}} \right) + \cos \left( {{{\pi  - 3x} \over 2}} \right) = {\cos

Câu hỏi số 206756:
Vận dụng

Phương trình \(\sin \left( {{{3x - 7\pi } \over 2}} \right) + \cos \left( {{{\pi  - 3x} \over 2}} \right) = {\cos ^{ - 1}}{{3x} \over 2}\) có nghiệm là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:206756
Phương pháp giải

- Sử dụng các công thức \(\eqalign{& \sin \left( {a \pm b} \right) = \sin a\cos b \pm \cos a\sin b \cr & \cos \left( {a \pm b} \right) = \cos a\cos b \mp \sin a\sin b \cr} \), đưa phương trình về dạng phương trình đẳng cấp bạc hai.

- TH1: Kiểm tra xem \(\cos \dfrac{3x}{2}=0\,\,\left( \sin \dfrac{3x}{2}=\pm 1 \right)\) có thỏa mãn là nghiệm của không?

- TH2: Khi \(\cos \dfrac{3x}{2}\ne 0\). Chia 2 vế phương trình cho \({{\cos }^{2}}\dfrac{3x}{2}\).

Giải chi tiết

Hướng dẫn giải chi tiết

\(\eqalign{ & \sin \left( {{{3x - 7\pi } \over 2}} \right) + \cos \left( {{{\pi - 3x} \over 2}} \right) = {\cos ^{ - 1}}{{3x} \over 2} \cr & \Leftrightarrow \sin \left( {{{3x} \over 2}} \right)\cos \left( {{{7\pi } \over 2}} \right) - \cos \left( {{{3x} \over 2}} \right)\sin \left( {{{7\pi } \over 2}} \right) + \sin \left( {{{3x} \over 2}} \right) = {1 \over {\cos \left( {{{3x} \over 2}} \right)}} \cr & DK:\cos {{3x} \over 2} \ne 0 \Leftrightarrow x \ne {\pi \over 3} + {{k2\pi } \over 3}\,\,\left( {k \in Z} \right) \cr & \Leftrightarrow \cos \left( {{{3x} \over 2}} \right) + \sin \left( {{{3x} \over 2}} \right) = {1 \over {\cos \left( {{{3x} \over 2}} \right)}} \Leftrightarrow {\cos ^2}\left( {{{3x} \over 2}} \right) + \sin \left( {{{3x} \over 2}} \right)\cos \left( {{{3x} \over 2}} \right) = 1\,\,\,\left( * \right) \cr} \)

Chia cả 2 vế của phương trình (*) cho \({\cos ^2}{{3x} \over 2}\) ta được:

\(\eqalign{ & 1 + {{\sin \left( {{{3x} \over 2}} \right)} \over {\cos \left( {{{3x} \over 2}} \right)}} = {1 \over {{{\cos }^2}\left( {{{3x} \over 2}} \right)}} \Leftrightarrow 1 + \tan {{3x} \over 2} = 1 + {\tan ^2}{{3x} \over 2} \cr & \Leftrightarrow {\tan ^2}{{3x} \over 2} - \tan {{3x} \over 2} = 0 \Leftrightarrow \tan {{3x} \over 2}\left( {\tan {{3x} \over 2} - 1} \right) = 0 \cr & \Leftrightarrow \left[ \matrix{\tan {{3x} \over 2} = 1  \cr \tan {{3x} \over 2} = 0 \cr} \right. \Leftrightarrow \left[ \matrix{{{3x} \over 2} = {\pi \over 4} + k\pi  \cr {{3x} \over 2} = k\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{x = {\pi \over 6} + {{k2\pi } \over 3} \cr x = {{k2\pi } \over 3}  \cr} \right.\,\,\left( {k \in Z} \right)\,\,\left( {tm} \right) \cr} \)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com