Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)\).Tồn tại hai tiếp tuyến của (C)

Câu hỏi số 211003:
Vận dụng cao

Cho hàm số \(y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)\).Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy  tương ứng tại AB sao cho \(OA = 2017.OB\). Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:211003
Phương pháp giải

Ta có tính chất sau: Mọi đường thẳng nối các tiếp điểm của 2 tiếp tuyến cùng hệ số góc của đồ thị hàm số bậc ba luôn đi qua điểm uốn của đồ thị hàm số đó

(điểm uốn là điểm thuộc đồ thị hàm số \(y = f(x)\), có hoành độ là nghiệm của phương trình \(y’’ = 0\))

Giải chi tiết

Ta có \(y' = 3{x^2} + 12x + 9;y'' = 6x + 12 = 0 \Leftrightarrow x = -2\)

Điểm uốn của đồ thị hàm số là \(U(–2;1)\).

Xét đường thẳng \(d\) đi qua \(U(-2;1)\) có phương trình \(y = {k_d}\left( {x + 2} \right) + 1\) hay \(y = {k_d}x + 2{k_d} + 1\).

\(d\)  cắt \(Ox, Oy\) lần lượt tại \(A\left( { - \dfrac{{2{k_d} + 1}}{{{k_d}}};0} \right),B\left( {0;2{k_d} + 1} \right)\).

\(OA = 2017.OB \Leftrightarrow \left| {\dfrac{{2{k_d} + 1}}{{{k_d}}}} \right| = 2017\left| {2{k_d} + 1} \right| \Leftrightarrow {k_d} =  \pm \dfrac{1}{{2017}};{k_d} =  - \dfrac{1}{2}\).

Nếu \({k_d} =  - \dfrac{1}{2}\) thì \(y =  - \dfrac{1}{2}x\) nên \(A \equiv B\) (loại).

Khi đó ta có hệ số góc của \(d\) là \({k_d} =  \pm \dfrac{1}{{2017}}\)

Do đó có 2 đường thẳng \(d\) thỏa mãn

Từ đó suy ra có 2 giá trị \(k\) thỏa mãn bài toán

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com