Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tập A = {1; 2; 4; 6; 7; 9}. Hỏi có thể lập được từ tập A bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau, trong đó không có mặt chữ số 7.

Câu 215095: Cho tập A = {1; 2; 4; 6; 7; 9}. Hỏi có thể lập được từ tập A bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau, trong đó không có mặt chữ số 7.

A. 36

B. 60

C. 72

D. 120

Câu hỏi : 215095

Phương pháp giải:

Đưa về bài toán lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau từ tập B = {1; 2; 4; 6; 9}.


Sử dụng công thức chỉnh hợp cho bài toán này.

  • Đáp án : D
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Lập số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có mặt chữ số 7, ta bỏ chữ số 7 ra khổi tập hợp A, khi đó ta được tập hợp B = {1; 2; 4; 6; 9} và đưa bài toán trở thành có thể lập được từ tập B bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau.

    Số các số có 4 chữ số khác nhau lập được từ tập B là chỉnh hợp chập 4 của 5. Vậy có \(A_5^4 = 120\) số.

    Chọn D.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com