Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = x + \frac{5}{{x - 2}}\) với x > 2 là:

Câu hỏi số 217702:
Thông hiểu

Tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = x + \frac{5}{{x - 2}}\) với x > 2 là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:217702
Phương pháp giải

- Bất đẳng thức Cauchy cho 2 số x, y không âm: \(\frac{{x + y}}{2} \ge \sqrt {xy} \,\,\forall x,y \ge 0.\)

Dấu “=” xảy ra khi và chỉ khi x = y.

Giải chi tiết

Ta có: \(x + \frac{5}{{x - 2}} = x - 2 + \frac{5}{{x - 2}} + 2\)

Vì x > 2 nên x – 2 > 0 và \(\frac{5}{{x - 2}} > 0\) Áp dụng bất đẳng thức Cauchy cho 2 số x – 2 và \(\frac{5}{{x - 2}}\) ta có: 

\(\begin{array}{l}x - 2 + \frac{5}{{x - 2}} \ge 2\sqrt {\left( {x - 2} \right)\frac{5}{{x - 2}}} = 2\sqrt 5 \\ \Rightarrow x + \frac{5}{{x - 2}} = x - 2 + \frac{5}{{x - 2}} + 2 \ge 2\sqrt 5 + 2\end{array}\) 

Vậy \(\min f\left( x \right) = 2\sqrt 5  + 2\). Dấu “=” xảy ra khi 

\(x - 2 = \frac{5}{{x - 2}} \Leftrightarrow {\left( {x - 2} \right)^2} = 5 \Leftrightarrow \left[ \begin{array}{l}x = 2 + \sqrt 5 \\x = 2 - \sqrt 5 \end{array} \right.\)

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com