Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tọa độ giao điểm của đường thẳng d có phương trình \(d:\dfrac{{x + 1}}{1} = \dfrac{y}{{ - 1}} =

Câu hỏi số 218159:
Nhận biết

Tọa độ giao điểm của đường thẳng d có phương trình \(d:\dfrac{{x + 1}}{1} = \dfrac{y}{{ - 1}} = \dfrac{{z + 2}}{3}\) với mặt phẳng (P) có phương trình\((P):x + 2y - z - 3 = 0\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:218159
Phương pháp giải

 Chuyển phương trình đường thẳng d về dạng tham số. Suy ra tọa độ điểm \(M \in (d)\) Sau đó thay tọa độ điểm M vào phương trình mặt phẳng để tìm tham số. Kết luận.

Giải chi tiết

Giả sử M là tọa độ giao điểm của (d) và (P).\(d:\dfrac{{x + 1}}{1} = \dfrac{y}{{ - 1}} = \dfrac{{z + 2}}{3} \Rightarrow d:\left\{ \begin{array}{l}x = - 1 + t\\y = 0 - t\\z = - 2 + 3t\end{array} \right.\)

Lấy \(M \in (d) \Rightarrow M\left( { - 1 + t; - t; - 2 + 3t} \right)\)

Vì \(M \in (P) \Rightarrow - 1 + t + 2.( - t) - ( - 2 + 3t) - 3 = 0 \Leftrightarrow - 4t - 2 = 0 \Leftrightarrow t = - \dfrac{1}{2}\)

Suy ra ta có \(M\left( { - \dfrac{3}{2};\dfrac{1}{2}; - \dfrac{7}{2}} \right)\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com