Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của phương trình\(\sqrt{x+5-4\sqrt{x+1}}+\sqrt{x+2-2\sqrt{x+1}}=1\) là:

Câu hỏi số 224654:
Vận dụng cao

Tập nghiệm của phương trình\(\sqrt{x+5-4\sqrt{x+1}}+\sqrt{x+2-2\sqrt{x+1}}=1\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:224654
Phương pháp giải

Phương pháp:

+ Phương trình có dạng: \(\sqrt{f(x)}+\sqrt{g(x)}=c\) trong đó \(f(x)={{h}^{2}}(x);\,\,\,g(x)={{k}^{2}}(x)\)

+  Khi đó phương trình được đưa về dạng \(\sqrt{{{h}^{2}}(x)}+\sqrt{{{k}^{2}}(x)}=c\Leftrightarrow \left| h(x) \right|+\left| k(x) \right|=c\). Bỏ dấu trị tuyệt đối theo định nghĩa \(A=\left\{ \begin{align}  & \,\,\begin{matrix}   A & khi & A\ge 0  \\\end{matrix} \\ & \begin{matrix}  -A & khi & A<0  \\\end{matrix} \\\end{align} \right.\).

Giải phương trình ta tìm được x

Giải chi tiết

Điều kiện: \(x+1\ge 0\Leftrightarrow x\ge -1\)

Ta có:

\(\begin{align}  & x+5-4\sqrt{x+1}=x+1-4\sqrt{x+1}+4={{\left( \sqrt{x+1}-2 \right)}^{2}} \\ & x+2-2\sqrt{x+1}=x+1-2\sqrt{x+1}+1={{\left( \sqrt{x+1}-1 \right)}^{2}} \\\end{align}\)

Phương trình:

\(\begin{align}  & \sqrt{x+5-4\sqrt{x+1}}+\sqrt{x+2-2\sqrt{x+1}}=1\Leftrightarrow \sqrt{{{\left( \sqrt{x+1}-2 \right)}^{2}}}+\sqrt{{{\left( \sqrt{x+1}-1 \right)}^{2}}}=1 \\ & \Leftrightarrow \left| \sqrt{x+1}-2 \right|+\left| \sqrt{x+1}-1 \right|=1\,\,\,\,\,\left( 1 \right) \\\end{align}\)

+) Trường hợp 1: Nếu \(\sqrt{x+1}\ge 2\Leftrightarrow x+1\ge 4\Leftrightarrow x\ge 3\) thì: \(\left\{ \begin{align}  & \left| \sqrt{x+1}-2 \right|=\sqrt{x+1}-2 \\ & \left| \sqrt{x+1}-1 \right|=\sqrt{x+1}-1 \\\end{align} \right.\)

\(\left( 1 \right)\,\,\Leftrightarrow \sqrt{x+1}-2+\sqrt{x+1}-1=1\Leftrightarrow \sqrt{x+1}=2\Leftrightarrow x+1=4\Leftrightarrow x=3\,\,\,\left( tm \right)\) 

+) Trường hợp 2: Nếu \(\sqrt{x+1}\le 1\Leftrightarrow x+1\le 1\Leftrightarrow x\le 0\) thì: \(\left\{ \begin{align}  & \left| \sqrt{x+1}-2 \right|=2-\sqrt{x+1} \\ & \left| \sqrt{x+1}-1 \right|=1-\sqrt{x+1} \\\end{align} \right.\)

\(\left( 1 \right)\Leftrightarrow 2-\sqrt{x+1}+1-\sqrt{x+1}=1\Leftrightarrow \sqrt{x+1}=1\Leftrightarrow x+1=1\Leftrightarrow x=0\,\,\,\left( tm \right)\)

+) Trường hợp 3: Nếu \(1<\sqrt{x+1}<2\Leftrightarrow 1<x+1<4\Leftrightarrow 0<x<3\) thì: \(\left\{ \begin{align}  & \left| \sqrt{x+1}-2 \right|=2-\sqrt{x+1} \\ & \left| \sqrt{x+1}-1 \right|=\sqrt{x+1}-1 \\\end{align} \right.\)

\((1)\Leftrightarrow 2-\sqrt{x+1}+\sqrt{x+1}-1=1\)

      \(\Leftrightarrow 1=1\) (luôn đúng với \(\forall x \in \)(0; 3) )

Vậy tập nghiệm của phương trình là [0; 3]

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com