Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số nào sau đây có \(y' = 2x + {1 \over {{x^2}}}\)?

Câu hỏi số 236377:
Nhận biết

Hàm số nào sau đây có \(y' = 2x + {1 \over {{x^2}}}\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:236377
Phương pháp giải

Tính đạo hàm ở từng đáp án.

Giải chi tiết

Đáp án A: \(y' = {{\left( {{x^3} + 1} \right)'.x - \left( {{x^3} + 1} \right)x'} \over {{x^2}}} = {{3{x^2}.x - {x^3} - 1} \over {{x^2}}} = {{2{x^3} - 1} \over {{x^2}}}\)

Đáp án B:

\(\eqalign{  & y = {{3\left( {x + 1} \right)} \over {{x^2}}}  \cr   &  \Rightarrow y' = 3.{{\left( {x + 1} \right)'.{x^2} - \left( {x + 1} \right)\left( {{x^2}} \right)'} \over {{x^4}}} = 3{{{x^2} - 2x\left( {x + 1} \right)} \over {{x^4}}} = 3{{ - {x^2} - 2x} \over {{x^4}}} =  - 3{{x + 2} \over {{x^3}}} \cr} \)

Đáp án C: \(y' = {{\left( {{x^3} + 5x - 1} \right)'.x - \left( {{x^3} + 5x - 1} \right).x'} \over {{x^2}}} = {{\left( {3{x^2} + 5} \right).x - {x^3} - 5x + 1} \over {{x^2}}} = {{2{x^3} + 1} \over {{x^2}}} = 2x + {1 \over {{x^2}}}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com