Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm hệ số của x4 trong khai triển nhị thức Newton \({{\left( 2x+\frac{1}{\sqrt[5]{x}} \right)}^{n}}\),

Câu hỏi số 237750:
Thông hiểu

Tìm hệ số của x4 trong khai triển nhị thức Newton \({{\left( 2x+\frac{1}{\sqrt[5]{x}} \right)}^{n}}\), biết n là số tự nhiên lớn nhất thỏa mãn \(A_{n}^{5}\le 18A_{n-2}^{4}\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:237750
Phương pháp giải

+) Tìm n từ bất phương trình \(A_{n}^{5}\le 18A_{n-1}^{4}\)

+) Sử dụng khai triển nhị thức Newton \({{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{n-k}}{{b}^{k}}}\)

Giải chi tiết

\(\begin{array}{l}A_n^5 \le 18A_{n - 2}^4 \Leftrightarrow \frac{{n!}}{{\left( {n - 5} \right)!}} \le 18\frac{{\left( {n - 2} \right)!}}{{\left( {n - 6} \right)!}}\\ \Leftrightarrow \frac{{n\left( {n - 1} \right)}}{{n - 5}} \le 18 \Leftrightarrow {n^2} - n \le 18n - 90 \Leftrightarrow 9 \le n \le 10\\ \Leftrightarrow n = 10\\ \Rightarrow {\left( {2x + \frac{1}{{\sqrt[5]{x}}}} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k{{\left( {2x} \right)}^{10 - k}}{{\left( {{x^{ - \frac{1}{5}}}} \right)}^k}}  = \sum\limits_{k = 0}^{10} {C_{10}^k{2^{10 - k}}{x^{10 - k - \frac{k}{5}}}} \end{array}\)

Để tìm hệ số của x4 ta có: \(10-k-\frac{k}{5}=4\Leftrightarrow \frac{6}{5}k=6\Leftrightarrow k=5\)

Vậy hệ số của x4 là \(C_{10}^{5}{{.2}^{5}}=8064\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com